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l)EXPLANATION OF EXCEPTIONAL VALUES IN MULTI-DIMENSIONAL
BUSINESS DATABASES

Multi-dimensional or OnLine Analytical Processing (OLAP) databases are a popular
business intelligence (BI)  technique in the field of enterprise information systems for
business analytics and decision support. In this dissertation, OLAP database functionality
is extended to support the business analyst in the exploration of OLAP data. The database
is augmented with novel functionality for the detection of exceptional values, explanation
generation, and sensitivity analysis. We describe how exceptional values at any level in
the data, can be automatically detected by statistical and managerial models. It is also
shown how exceptional values can be explained by underlying causes. This is realized by a
generic model for diagnosis of atypical values. By applying it, a full explanation tree of
causes at successive levels can be generated. If the tree is too large, the analyst can use
appropriate filtering measures to prune the tree to a manageable size. The purpose of the
methods and algorithms presented here, is to provide OLAP databases with more powerful
explanatory analytics and reporting functions. This methodology has a wide range of
applications, such as variance analysis in accounting, competition benchmarking, analysis
of sales and financial data, and the analysis of any other data that possess a multi-
dimensional hierarchical structure. The method is demonstrated in several case studies. For
example, the explanatory analysis of a sales data cube is discussed, and computerized
competition benchmarking with financial data about Dutch retail companies is illustrated.
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Chapter 1

Introduction

1.1 Problem definition

“How can the functionality of multi-dimensional business databases be extended with

diagnostic capabilities to support managerial decision-making?” This question states

the main research problem addressed in this thesis. Before giving an answer, the ques-

tion first requires clarification and delineation. In this chapter, the research question

is placed briefly into context, both regarding academic and business relevance. This

leads to the formulation of three specific research questions. Subsequently, a section

is dedicated to each specific research question. An outline of this thesis concludes the

chapter.

1.1.1 Business Intelligence

In management theory, the managerial decision-making process is often viewed as

a phase model composed out of the phases: intelligence, design, and choice (Simon

1960). Similar phase models can be found in Emory and Niland (1968), Bonge (1972),

and Mintzberg et al. (1976). In the intelligence phase, the business environment

is scanned for conditions calling for decisions. During the design phase, possible

courses of actions are developed and analyzed. And the choice phase concerns the

selection of a specific course of action from those available. All phases of this process

can be supported by the use of business intelligence (BI) (Turban et al. 2007).

BI is an umbrella term that combines methodologies, processes, technologies, and

1



2 Problem definition

applications needed to transform company data into information and knowledge, that

drive business decisions and actions (Raisinghani 2004). The main objective of BI is

to enable access to historical and current company data, to enable manipulation of

data, and to give business decision-makers the ability to analyse data that enables

them to make more informed and hopefully better decisions. In this sense the term

BI can also be used as the product of the transformation process in the form of the

generated information and knowledge useful for decision-making.

In Figure 1.1, the conceptual architecture of the BI framework and its main com-

ponents are depicted, based on the idea of the enterprise information factory (Inmon

1996). The framework describes how companies conduct and organize BI. In the

framework, BI is arranged in components for (1) data production, (2) data assembly,

logistics, and storage, and (3) data processing, analysis, and consumption. Starting

from the left of Figure 1.1, company data flows from various operational production

databases in back-end OnLine Transaction Processing (OLTP) systems, Enterprise

Resource Planning (ERP) systems, and external data providers to the data warehouse.

The data warehouse is the cornerstone of the BI framework. It is a large repository,

that integrates data from several data production sources in a company, and is de-

signed specifically to support managerial decision-making. Moreover, it is character-

ized as a set of subject-oriented, integrated, time-variant, and nonvolatile decision-

support databases (Inmon 1996). Whereas a data warehouse combines databases

across the organisation, a data mart is a subset of the data warehouse and focuses

on a particular subject or department. Before the data can be stored into the data

warehouse or data marts, the data usually needs to be assembled into a form ready

for data analysis via the Extraction, Transformation, and Loading (ETL) staging

area. The data in the data warehouse is finally processed by various BI front-end

applications and consumed by business decision-makers, such as, financial analysts,

accountants, and managers. The front-end applications allow decision-makers to ac-

cess and analyze data from the data warehouse via a broad category of applications

and techniques for gathering, analyzing, and providing access to data to support

managers in decision-making. These BI applications include query and reporting

tools, multi-dimensional or OnLine Analytical Processing (OLAP) databases1, data

1The terms multi-dimensional database and OLAP database have the same meaning in this
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mining and statistics, data visualization, and knowledge and business performance

management systems.

Figure 1.1: Business intelligence framework (based on Inmon (1996)).

1.1.2 Multi-dimensional database

The multi-dimensional database is an important component of the BI framework. It

is used to provide business decision-makers with the ability to perform dynamic data

analysis. With OLAP software technology2, users gain access to the data warehouse.

This type of access provides decision-makers with the potential to improve their un-

derstanding of business changes and their ability to identify or generate possible

solutions for a variety of decision problems. Decision-makers tend to have questions

that are often multi-dimensional in nature and demand fast access to large amounts

of aggregated data (Kimball 1996). A typical business question might be: “What was

dissertation. In Section 2, these terms are described in detail.
2With the terms OLAP software (technology) or OLAP (information) system we mean the OLAP

database plus the software to connect with a back-end source database and the software to analyse
the OLAP database.



4 Problem definition

the profit of product A this year, in region X, per sales office, compared with the pre-

vious version of the product, compared to the targeted profit?”. For decision-making

purposes it might be necessary that the answer to this question is explored further,

for example, on the quarter, month, and week level. This functionality is provided

by OLAP technology (Thomsen 1997).

OLAP databases are a popular BI technique in the field of enterprise informa-

tion systems for business analysis and decision support. The functionality of decision

support systems (DSS), management information systems (MIS), and executive in-

formation systems (EIS) is combined in OLAP and extended with multi-dimensional

views or data cubes, dynamic data analysis with intuitive navigational operators,

and graphical data representation (Koutsoukis et al. 1999). OLAP systems support

a variety of activities in business departments. Finance departments use OLAP for

applications such as budgeting, activity-based costing, financial performance analy-

sis, and financial modeling (Thomsen 2002). Sales analysis and forecasting are two of

the OLAP applications found in marketing departments. Among other applications,

marketing departments use OLAP for market research analysis, promotions analysis,

sales forecasting, customer analysis, and market/customer segmentation. In addition,

OLAP is considered more and more as an integral part of an Enterprise Resource Plan-

ning (ERP) system as can be seen in SAP’s Business Information Warehouse (SAP

2006). To stress the importance of BI and OLAP products we just mention that the

size of the world BI market is estimated about $10.5bn in 2010, and is still growing

(Gartner 2011).

Business analysts are relying more and more on OLAP data3 for business decision-

making. However, today’s OLAP databases have limited explanation or diagnostic

capabilities. The diagnostic process is now carried out mainly manually by business

analysts, where the analyst explores the multi-dimensional data to spot exceptions

visually, and navigates the data with operators like drill-down, roll-up, slice, and

dice to find the reasons for these exceptions (Han and Kamber 2005). It is obvious

that human analysis can become problematic and error-prone for large data sets that

commonly appear in practise. For example, a typical multi-dimensional data set has

five to seven dimensions and an average of three levels hierarchy on each dimension

3With the term OLAP data we mean the actual business data that is stored in an OLAP database.
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and aggregates more than a million records (Pendse 2006). Thus in practise, OLAP

databases are often too large and have too many dimension hierarchies for analysts

to browse effectively by hand. Therefore, computerized diagnosis in OLAP data, to

help analysts discover the interesting parts of the OLAP database, is an important

topic.

The goal of this thesis is to largely automate the current manual diagnostic dis-

covery process in OLAP systems and to extend these systems with more powerful

analysis and reporting functions. This functionality can be provided by extending

the conventional OLAP system with an explanation formalism, which supports the

work of human decision makers in diagnostic processes, as part of the intelligence

phase in the decision-making process. Here diagnosis4 is defined as finding the best

explanation of unexpected behaviour (i.e., symptoms or exceptions) of a system un-

der study (Verkooijen 1993). This definition captures two tasks that are central in

problem diagnosis, namely problem identification and explanation generation. It as-

sumes that we know which behaviour we may expect from a correctly working system,

otherwise we would not be able to determine whether the actual behaviour is what

we expect or not. Mintzberg et al. (1976) describe problem identification as an activ-

ity “in which opportunities, problems and crises are recognized and evoke decisional

activity” and explanation generation as an activity “in which management seeks to

comprehend the evoking stimuli and determine cause-effect relationships”.

1.1.3 Diagnostic problem solving

The ability to generate explanations is generally considered to be an important aspect

of knowledge-based systems in various application domains. Therefore, the formaliza-

tion of diagnostic problem-solving or diagnostic reasoning is a subject that has been

studied extensively in the field of Operations Research (OR) and Artificial Intelli-

gence (AI) since the 1970’s, and has applications in diverse domains as the medical,

physical, and business and management domain. A short summary of diagnosis in the

medical and physical domain is given in Appendix A. Diagnosis in the business and

management domain is an important research area, where diagnostic support is often

4Obtained from the Greek words dia = by and gnosis = knowledge.
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integrated in business information systems, like MIS and DSS, designed to support

decision-making in various forms. Moreover, diagnosis occurs in a number of differ-

ent business disciplines, like finance, accounting, marketing, and so forth. Typical

diagnostic reasoning tasks include (Hamscher 1990): financial assessment, interfirm

comparison, auditing, tax planning, and cost control. A special application of diag-

nosis in this domain is diagnosis integrated in a multi-dimensional database. In this

thesis we focus on this relatively new application domain, because this is a critical,

but rather unattended, aspect of the decision-making process of business analysts

using these information systems.

The objective of the diagnostic process is to find an explanation for significant dis-

crepancies between actual and expected system behaviour. In general, the diagnostic

process is seen as a complex problem solving task with different kinds of interacting

knowledge, as depicted in Figure 1.2, based on Davis and Hamscher (1988). Symptom

identification is obviously necessary before the diagnostic process can be initialized

to generate explanations for symptoms. This task basically requires three kinds of

knowledge. Two are related to the input, and one to the interpretation of possible

discrepancies (Benjamins 1993):

• the actual model with observations of the actual behaviour or definitions of the

structure of the system to be diagnosed;

• the normative model with a description or a prediction of the expected be-

haviour of the system;

• and domain knowledge concerning the quality and preciseness of the observa-

tions and the expected behaviour as well as comparison knowledge (e.g., the

type of statistical model applied, threshold values, etc.) to decide whether a

discrepancy is significant.

A major activity in symptom identification is the specification of the degree of

deviation from the norm. When a discrepancy between actual system behaviour and

expected behaviour is discovered, and has been qualified as unacceptable with respect

to some specified norm, the next step is to explain this using our “understanding”

of the system. A positive decision usually results in an “explanatory path” that
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Figure 1.2: The general diagnostic task, adapted from Davis and Hamscher (1988).

leads from the observed symptoms, through the various abnormalities, to the causes.

The objective of the diagnostic process is to find an explanation for a symptom. An

explanation is a hypothesis that one or more abnormal states of the system have

caused the observed discrepancies. In this work, the diagnostic process is conceived

as a hypothetico-deductive process consisting of the following three consecutive tasks:

problem identification, explanation generation, and explanation discrimination. This

decomposition of the diagnostic process is motivated by the work of Davis and Ham-

scher (1988). In this thesis sensitivity analysis is also considered to be a part of the

diagnostic process. The objective of sensitivity analysis is to determine how changes

in one or more causes affect the identified symptom in some system. In our view,

sensitivity analysis is considered to be the reverse of explanation generation in the

diagnostic process, in the sense that in sensitivity analysis the reasoning proceeds

from cause to effect.

1.1.4 Research question

Recall the main research question of this thesis:

How can the functionality of multi-dimensional business databases be extended

with diagnostic capabilities to support managerial decision-making?

As mentioned, business diagnosis is considered to be composed of three successive

managerial decision routines or functionalities: (1) exception identification, (2) expla-

nation generation, and (3) sensitivity analysis. Therefore, the main research question



8 Identification of exceptional values

breaks down into the following specific questions:

1. How can we identify exceptional values in a multi-dimensional database?

2. How can we generate explanations for these exceptional values?

3. How can we extend the multi-dimensional database functionality with sensitivity

analysis?

Basically, the objective of our research is to propose three extensions to the OLAP

database to support the business analyst in exploration of OLAP data. The OLAP

database is extended with novel functionality for the detection of exceptional values,

explanation generation, and sensitivity analysis. At the right side of Figure 1.1,

the contributions of the thesis are depicted in the BI framework as new analytical

components for OLAP databases. These components are described in Chapters 3,

4, and 5. Important in the treatment of the research questions is the development

of a formal notation for multi-dimensional databases, suiting our research objective.

This notation is presented in Chapter 2. In Chapter 6, we present typical business

applications of the three analytical components for OLAP databases in a number

of case studies. These case studies show the business relevance of answering the

research questions. The analyses in the case studies are realized with prototype

software applications which are developed for this purpose.

1.2 Identification of exceptional values

Business analysts who are browsing OLAP data cubes5 are often looking for ex-

ceptions at any level in the data, because exceptions often lead to identification of

problem areas or new business opportunities. This is the idea behind management

by exception reporting (Judd et al. 1981). For example, chain store managers often

pay special attention to areas with unusually high or low sales. Analysts from credit

card companies would like to find anomalous transactions for either fraud detection

or marketing reasons (Knorr and Ng 1998). Intuitively, an exceptional value in a

data cube is a cell with a value significantly different from the value that is expected

5See Definition 2.6 for a description.
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for this cell. This is a rather vague criterion that is formalized mathematically in

Chapter 3. The expected behaviour in an OLAP data cube is derived from some

normative model, that has been defined by business goals that have been expressed

by the management. In this thesis we investigate the applicability of various types

of normative models in OLAP databases. In research by Pounds (1969), it is shown

that normative models are based on trends, comparable situations inside or outside

the company, expectations of other people, or on theoretical models such as statistical

models. A statistical model for multi-dimensional data, should estimate a cell value in

the context of its position in the data cube and consider the value variation patterns

over all dimensions and aggregates them relative to the cell it belongs to. Appro-

priate statistical models for OLAP data cubes are all kinds of ANalysis Of VAriance

(ANOVA) models (Scheffé 1959; Hoaglin et al. 1988) for continuous data and models

of independency for discrete category data (Bishop et al. 1975). In Chapter 3, we

propose algorithms to detect exceptions automatically so that analysts could easily

identify them even when the data cube is very large.

1.3 Explanation of exceptional values

Two independent surveys illustrate the need for information systems enhanced with

diagnostic explanatory capabilities in the domain of business and management. Wier-

enga and van Bruggen (2001) evaluated 12 brand managers’ experiences with existing

marketing information systems and ERP systems. These brand managers were not

very satisfied with the existing systems. In particular, they evaluated ERP systems

negatively. One remark they made, on the business intelligence functionality of these

systems, was “You only see the symptoms; you do not see the causes”. In the devel-

opment of a better information system the brand managers wanted a system that did

not just record events but also explained them. Moreover, the authors conclude that

these managers rely mainly on the problem-solving modes of reasoning and analo-

gizing. Under these reasoning modes, they claim, one cannot determine an absolute

best solution for the problem at hand. Therefore, the object of decision support is

not to produce a precise recommendation on what to do, but rather to support the

brand manager’s decision process. For this purpose computerized diagnosis should
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provide information about what is going on in the business environment and actively

draw a manager’s attention to specific events. In a survey of DSS users by Meador

et al. (1984), it was found that needs assessment and problem diagnosis were rated

as the most important factors in DSS development. This has led to the conclusion

that existing techniques provide usually adequate support for problem finding but

very limited support for problem diagnosis. Because this research problem only has

received marginal attention in later research (Section 4.8), the problem still largely

exists. For this reason, we research the possibilities here to extend OLAP systems

with functionality for problem diagnosis.

Most OLAP software products rely heavily on the business analyst’s intuition

to manually drive the diagnostic process. Typical questions like “Why has sales

increased in 2008 compared to 2009” or “Why is performance of our branch office

ABC low compared to the average” can be answered by manual inspection of multi-

dimensional data cubes. Such ad hoc user-driven exploration becomes complicated

as data dimensionality and size increases. Moreover when it comes to an efficient in

depth examination of the underlying causes of a symptom, there is still a shortage

of tools to intelligently prune a large tree of causes to its essential branches. The

goal of this thesis is to support the manual diagnostic discovery processes by adding

explanation functionality. This can be provided by extending the conventional OLAP

system with an explanation formalism for diagnosis of atypical values (Section 4.2.1).

For this purpose, a methodology for diagnosis in the OLAP context is proposed here.

The method first supports the analyst in the problem identification phase by de-

tecting abnormal patterns in multi-dimensional data. In the subsequent explanation

generation phase, the analyst is supported by returning reasons for significant drops,

or increases, by generating the most important causes at lower level data. In doing

so, a full explanation tree of causes at successive levels can be generated. If the tree

is too large, the analyst can use appropriate filtering measures to prune the tree to a

manageable size, to reduce information overload. The methodology has a wide range

of applications such as interfirm comparison, analysis of sales data and the analysis of

any other data that possess a multi-dimensional hierarchical structure (Chapter 4).

Hamscher (1990) and Verkooijen (1993) investigate the appropriateness of the

business domain for diagnostic reasoning techniques by searching for similarities with
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the physical and medical application domain. In Appendix A, we examine whether

these similarities also hold for diagnosis in multi-dimensional databases. Two similari-

ties are the presence of decomposable structures (i.e. the actual model) and behaviour

prediction (i.e. the normative model). Both measures and dimensions hierarchies in

the data cube have decomposable structures. An OLAP cube in the financial do-

main could consists of the following decomposable structures: financial statements,

accounts, flows of goods and materials, market segments, etc. For example, the mea-

sures could represent a sales model M of a firm by means of quantitative equations

derived from its sales database (see Table 1.1). In such quantitative financial models

the dependent variables can be decomposed into its constituent independent variables

in the explanation generation process. In addition, the dimensions in the data cube

usually have hierarchies that specify aggregation levels. These dimension hierarchies

are by definition decomposable structures. For example, month ≺ quarter ≺ year is

a hierarchy on the time dimension and productcode ≺ producttype ≺ productline is a

hierarchy on the product dimension. The measures are aggregated to various levels of

detail of the combination of dimension hierarchy attributes using functions like sum

and average. For example, the gross profit of some year can be decomposed into the

gross profits of its constituent quarters, and the gross profit of a quarter can again be

decomposed into the gross profits of its constituent months. When using the common

additive aggregation function this decomposable structure is expressed as the math-

ematical equation: gross profit(year) =
4∑

i=1

gross profit(quarteri). When dimension

hierarchies are expressed as mathematical equations, the diagnosis task resembles

other more traditional diagnostic tasks that are represented by a structural model

(Appendix A). In conclusion, we state that OLAP business databases have indeed

decomposable structures, and the business entities described in the database struc-

ture have normative behaviours. These features suggest that the multi-dimensional

database is an appropriate domain for automated reasoning and explanation tech-

niques.
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Table 1.1: Measures in a sales model M .
1. Gross Profit = Revenues − Cost of Goods
2. Revenues = Volume × Unit Price
3. Cost of Goods = Variable Cost + Indirect Cost
4. Variable Cost = Volume × Unit Cost
5. Indirect Cost = 0.3 × Variable Cost

1.4 Sensitivity analysis

Currently, OLAP business databases offer little support for sensitivity analysis or

what-if analysis. Sensitivity analysis is the analysis of how changes in the output of

a quantitative model can be apportioned to different sources of variation in the input

of the model. In an OLAP context this naturally leads to “What if...?”-questions

and scenario analysis. For example, questions of the form: “What happens to an

aggregated cell value in the dimension hierarchy if I change the value of this cell

value by amount X?” These types of questions are important for business analysts

wanting to analyze the effect of changes in sales and costs figures on a product’s

profitability in a sales cube. Nowadays, multi-dimensional databases and software

are rather static and have limited support to make such analyses. The OLAP ana-

lyst that wants to answer what-if questions, now has to do separate calculations in

some special analysis environment (e.g. in MS Excel) or has to build SQL-queries

to alter the database. In Chapter 5, we propose methods to transform the current

static multi-dimensional database into a more dynamic environment, where we partly

automate sensitivity analysis. The idea is to treat the OLAP database as a system of

equations with respect to dimension hierarchies and relations between measures. For

this purpose, we elaborate on two important mathematical conditions for sensitivity

analysis in the OLAP context, namely consistency and solvability of the system of

OLAP equations. We distinguish between linear systems of OLAP equations, associ-

ated with dimension hierarchies and business models, and nonlinear systems of OLAP

equations, sometimes associated with business models.
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1.5 Outline of the thesis

This thesis is organized as follows. In Chapter 2, we provide a general introduction

to multi-dimensional business databases and present their background and context.

Next we formalize the notion of the multi-dimensional database and formulate a new

mathematical representation of it. This notation serves as a basis for the extensions

to the OLAP framework.

In Chapter 3, we develop a framework for the identification of exceptional values.

This provides an OLAP analyst the possibility to identify regions of exceptions in

an OLAP data cube during navigation, representing new business opportunities or

specific business problems. In addition, we elaborate on the exception identification

process in the OLAP context. Here we discuss suitable classes of normative models

for problem identification. A distinction is made between managerial and statisti-

cal normative models. In particular, we focus on two classes of statistical models:

multi-way ANOVA models for continuous OLAP data and contingency table models

for discrete OLAP data. Finally, a general algorithm for exception identification is

proposed for a general OLAP cube.

Chapter 4 is the main chapter of this thesis. Here we extend the multi-dimensional

model with the functionality to generate explanations for exceptional values in an

OLAP data cube. We present a method that gives the OLAP analyst explanations

for significant decreases or increases in business measures, identified at an aggregated

level. Our method for automated diagnosis is based on a generic explanation formal-

ism, as described in Feelders (1993) and Feelders and Daniels (2001). Explanation

generation is supported by the two internal structures of the OLAP data cube: the

business model and the dimension hierarchies. Therefore, we develop a multi-level

explanation method for finding significant causes in these structures, based on an

influence-measure which embodies a form of ceteris paribus reasoning. This method

is further enhanced with a look-ahead functionality to detect hidden causes. Expla-

nation generation is continued until a contributing cause cannot be explained further.

The result of the process is an explanation tree, where the main causes for a symptom

are presented to the analyst. We also propose a top-down approach for explanation

in systems with both OLAP drill-down and business model equations, and a greedy
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approach for explanation in systems that consist purely of drill-down equations. Fur-

thermore, to prevent information overload, several techniques are created to prune the

explanation tree. Finally, the construction of consistent chains of reference objects is

discussed for various types of normative models applicable in the OLAP context.

In Chapter 5, the multi-dimensional model is extended with the functionality for

sensitivity analysis. We discuss sensitivity analysis in systems that consist of purely

drill-down equations and also in systems that consist of business model equations.

In Chapter 6, we show the applicability of the extended OLAP framework in

a number of practical case studies. The following case studies are presented. In

Case 1, computerized interfirm comparison with financial data about Dutch retail

companies is discussed. In Case 2a and 2b, the top-down and greedy explanation

are illustrated respectively in a case study on the analysis of multi-dimensional sales

and financial data. In Case 3, the explanation method is used in a case study on

the analysis of multi-dimensional vehicle crime data. Finally in Case 4, sensitivity

analysis is discussed in a case study on the analysis of multi-dimensional supermarket

sales data. The analyses in the various case studies are carried out with prototype

software, that is described in the same chapter. Finally, in Chapter 7 we summarize

the main results of this thesis.

In Appendix A, a brief overview of computer-based diagnosis is given. In Appendix

B, we present the variables, data, and software, for the case study on interfirm com-

parison (Section 6.2). In Appendix C, we present background statistical information

and data for the case study on explanation in financial OLAP data (Section 6.3).

The mathematics in matrix notation to prove solvability and uniqueness of solutions

of the OLAP equations are given in Appendix D. As far as we know, this has never

been pointed out in the existing literature.



Chapter 2

Multi-dimensional business
databases

2.1 Introduction

An important and popular front-end application for business analysis and decision

support is the OLAP or multi-dimensional database. OLAP databases are capable

of capturing the structure of business data in the form of multi-dimensional tables

which are known as data cubes. Manipulation and presentation of information through

interactive multi-dimensional tables and graphical displays provide important support

for the business decision-maker.

Analytical data processing in OLAP databases is different from transaction data

processing in OLTP databases. In the past, business data was mainly stored in the

OLTP databases of transaction systems. The OLTP databases are normalized and

designed using Entity-Relationship (ER) modeling. This design makes the OLTP

database efficient for transaction processing but rather inefficient for managerial

decision-support and complex query handling. Only recently researchers have re-

alised the need to analyse the data and store it in a different format, the star model

or snowflake model, that is utilised specifically for decision-making purposes. This

research has led to a distinction between OLAP and OLTP databases. Codd (1993)

and Han and Kamber (2005) provide a detailed comparison.

Moreover, OLAP databases have a strong similarity with statistical databases.

15
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They both utilize the star data model and gain insight into data through fast, con-

sistent and interactive access. However, an important difference lies in the origin of

application areas. Whereas the statistical database area is mainly motivated by socio-

economic databases derived from census bureaus, as for example Statistics Nether-

lands, which are usually the domain of statisticians, the OLAP area is driven by

business applications, and their analysis for the purpose of decision-making. This is

the main reason that an OLAP system is considered a component of the data ware-

house. Decision-makers are not necessarily statisticians, but more typically business

managers and analysts. We refer to Shoshani (1997) for a detailed overview of the

similarities and differences between OLAP and statistical databases.

The remainder of this chapter is structured as follows. In the remainder of this

Section, we give a short introduction to the basic concepts of the data warehouse and

the multi-dimensional business database, its data model, and its implementation. In

Section 2.2, we formalize the notion of the multi-dimensional database. In particu-

lar, we present a new concise mathematical notation, particular suited for combining

the basic structures in the multi-dimensional database: dimensions, dimension hi-

erarchies, cubes, cells, and measures. In Section 2.3, we elaborate on two types of

equations that are present in the structure of OLAP databases: drill-down equations

and business model equations. In Section 2.4, we discuss related work. Finally, we

draw conclusions in Section 2.5.

2.1.1 Multi-dimensional model

The highly normalized form of the relational data model for OLTP databases is inap-

propriate in an OLAP database for performance reasons. Therefore, OLAP database

implementations typically employ a star model or star scheme (Kimball 1996), which

stores data de-normalized in a central fact table and associated dimension tables.

This type of data model allows for fast query access because the number of table

joins is heavily reduced compared to the relational model. The fact table contains

linkages to the dimension tables and the actual measured data. In a star scheme, data

is organized into measures and dimensions. Measures are the basic numerical units of

interest for analysis and textual dimensions correspond to different perspectives for

viewing measures. Dimensions are usually organized as dimension hierarchies, which
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offer the possibility to inspect measures on different dimension hierarchy levels.

Example 2.1.1. A star model representing a multi-dimensional financial database is

shown in Figure 2.1. It is taken from the case study in Section 6, and used as an

illustrative example in this thesis. This database, called GoSales, contains the finan-

cial figures from a generic fictitious company that sells sports equipment, obtained

from the Cognos OLAP product PowerPlay (IBM Cognos Software 2012). Figure 2.1

Figure 2.1: Star model with five dimension tables and a central fact table representing
the financial data set.

depicts a central fact table and five dimensions tables. The central fact table repre-

sents the financial data set. It lists the measures of the data, like profit, revenues,

costs, etc. The financial data set has five dimensions tables : Time (T), Product (P),

Location (L), Customer (C), and Vendor (V), and all dimensions have a 2-4 level

hierarchy.
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Aggregating measures up to a certain dimension level, creates a multi-dimensional

view of the data, also known as the data or OLAP cube. A data cube is not necessarily

a three-dimensional geometric structure, but is essentially n-dimensional. In the

upper left of Figure 2.3 on page 29, a financial data cube is shown, derived from the

case study described in Section 6.3.

The star scheme’s fact table has one row for each fact in the data cube. It has

a column for each measure, containing the measure value for the particular fact1.

In Table 2.1 an example fact is given for the financial fact table in Figure 2.1. As

Figure 2.1 shows, a star schema has one table for each dimension and a 1-to-many

(n) relationship with each dimension table. The dimension tables have corresponding

key columns and one column for each dimension level, for example, Year, Quarter,

Month, and TimeId. No column is needed for the top dimension level All, which will

always hold the same value. The dimension table’s primary key column is normally

an integer identifier. In Table 2.2, a data example is presented of the dimension table

Time. Moreover, the number in brackets in Figure 2.1 indicates the cardinality of

that level of the dimension hierarchy. Obviously, data redundancy occurs in dimension

tables. For example, because the year 2010 has 12 month values the year value 2010

is repeated 12 times in a table for the Time dimension.

Table 2.1: Example fact from the financial fact table.
ProdId LocId TimeId CustId VendId Profit Revenues Costs . . .

1 1 1 1 1 1295.00 3885.00 2590.00 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2.2: Example instance from the dimension table Time.
TimeId Year Quarter Month

1 2009 Q1 January
. . . . . . . . . . . .

1As well as a column for each dimension that contains a foreign key referencing a dimension table
for the particular dimension.
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2.1.2 Implementation of multi-dimensional databases

The implementation of multi-dimensional databases in OLAP software products has

two basic forms (Pedersen et al. 2001; Han and Kamber 2005):

• Relational OLAP (ROLAP) systems use relational database structures for stor-

ing data. Such systems employ indexing methods, such as bit-mapped indexing

and join indexing, to achieve good query performance.

• Multi-dimensional OLAP (MOLAP) systems store data in multi-dimensional

database structures. Such systems contain methods for dealing with sparsity

and often use indexing and hashing techniques to improve query permance.

MOLAP databases use multi-dimensional arrays as the basic data structure and

implement the OLAP operators as defined in Section 2.2.3 over the arrays. MOLAP

systems usually offer “more space-efficient storage as well as faster query response

times (Pedersen et al. 2001)”. ROLAP systems typically scale better in the number

of facts they can store, are more flexible with cube redefinitions, and provide better

support for frequent updates. The virtues of the two approaches are combined in

the hybrid OLAP approach, which uses MOLAP technology to store higher-level

summary data and ROLAP systems to store detailed data (Thomsen 1997). In this

chapter we abstract from the type of implementation, in the sense that our notation

can be incorporated in a ROLAP as well as a MOLAP system.

2.2 OLAP notation, concepts, and operators

2.2.1 Dimensions and dimension hierarchies

The basic unit of interest in the multi-dimensional database are numerical measures,

representing countable information (Lenz and Shoshani 1997) concerning a business

process. A measure can be analysed from different categorical perspectives, which

are the dimensions of the multi-dimensional data. Dimensions are represented by

Di1
1 , D

i2
2 , . . . , D

ik
k , . . . , D

in
n , where each domain Dik

k represents a dimension k, e.g.

Time, Location, Product and so on, from the associated business process. Each
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dimension has a set of dimension levels ik ∈ {0, 1, . . . ,maxk}, e.g. the Time dimen-

sion might have the following levels: Day, Week, Month, Quarter, Season, and Year.

Each domain corresponds with a dimension table in the star scheme. Furthermore,

the dimension levels are organised in multiple dimension hierarchies or dimension

paths (Vassiliadis 1998).

Definition 2.1. The domain Dk is a hierarchy Dik
k partially ordered by

D0
k ≺ D1

k ≺ . . . ≺ Dmaxk
k ,

where D0
k is the lowest level and Dmaxk

k is the highest level in Dk.

Moreover, each level in the hierarchyDik
k has an unique categoric label Aik

k correspond-

ing with a column name from the dimension table. For example, the column names

in Table 2.2 on page 18 correspond to the categoric labels for the Time dimension.

The presentation of a dimension hierarchy has a schema component and an in-

stance component (Shoshani 1997). The dimension levels and their structure as in

Definition 2.1 constitute the schema, and the dimension level instances constitute the

instances (i.e., values) for this schema. A single instance of a dimension level Dik
k is

denoted by dikk , where dikk ∈ Dik
k . The total number of instances in Dik

k is denoted by

|Dik
k |.

Example 2.2.1. For the Time dimension Dk = T we have the following labelled

hierarchy schema: T[Month]≺ T[Quarter] ≺ T[Year] ≺ T[All-Times] or in short

T0 ≺ T1 ≺ T2 ≺ T3, where the level instances at level 0 are T0 = {2009.Q1.Jan,

2009.Q1.Feb, 2009.Q1.Mar, . . .}, at level 1 are T1 = {2009.Q1, 2009.Q2, 2009.Q3,

2009.Q4, . . .}, at level 2 are T2 = {2009, 2010, 2011}, and T3 = {All-Times}.
Here we use the dot-notation as formulated in Definition 2.4, to indicate instances

of the dimension hierarchy. An example of the instantiated dimension hierarchy is

2009.Q1.Jan ≺ 2009.Q1 ≺ 2009 ≺ All-Times, where 2009.Q1.Jan ∈ T 0, 2009.Q1 ∈ T 1,

2009 ∈ T 2, and All-Times ∈ T 3.

In addition, the top level of a dimension always has a single level instance Dmaxk
k =

{All-Dk}, thus |Dmaxk
k | = 1, since analysis requires that measure instances that are

bound to different level instances, must be aggregated up to a single value. The

schema representation belonging to the hierarchy of the Time dimension is depicted
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at the left hand side of Figure 2.2. Underlying the schema representation the OLAP

system stores and maintains the instances and their relationships, called the repre-

sentation of the instances. This representation is depicted as a tree at the right hand

side of Figure 2.2.

Figure 2.2: The left hand side represents the hierarchy schema of the Time dimension;
the middle figure represent its schema dot-notation; the right hand side represents
the rooted tree of its dimension hierarchy instances.

With each dimension hierarchy in domain Dk a rooted tree T (Dk) = (V,E) is

associated, called the dimension hierarchy tree of Dk, as follows. The vertex set

V (Dk) contains as elements all dimension level instances appearing in Definition 2.1.

Suppose thatDik
k ≺ Dik+1

k is part of the dimension hierarchy, and furthermore suppose

that dik+1
k ∈ Dik+1

k and dikk ∈ Dik
k , such that dikk ≺ dik+1

k . The edge set E(Dk) contains

a directed edge from vertex dikk to vertex dik+1
k . The instance element dik+1

k is called

a parent and dikk is called its child. The instance All at level Dmaxk
k is the root of the

tree and the instances at level D0
k are the leaves of the tree on the lowest level. An

example tree of the hierarchy T0[Month] ≺ T1[Quarter] ≺ T2[Year] ≺ T3[All-Times]

of the Time dimension is depicted at the right side of Figure 2.2. For example, in

the tree the year 2009 is the parent of the children {2009.Q1, 2009.Q2, 2009.Q3,

2009.Q4}. We define an operator to determine the parent of some child element in

the hierarchy of a single domain Dik
k .
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Definition 2.2. A 1-dimensional roll-up operator is defined as

r+1(Dik
k ) = Dik+1

k .

Reversely, we define an operator to determine the children of some parent element in

the dimension hierarchy.

Definition 2.3. A 1-dimensional drill-down operator is defined as

r−1(Dik
k ) = Dik−1

k .

These operators r+1 and r−1 can also be applied on any subset X ik
k of Dik

k , and the

operators can be applied both on the schema as on the instance level. For example, on

the schema level as r−1(T 2[Year]) = T 1[Quarter], or on the instance level as r−1(2009),

to determine the quarters of some specific year.

A hierarchy schema structure in dot-notation is associated with each domain Dik
k

on some level ik in the hierarchy.

Definition 2.4. A hierarchy schema structure in dot-notation is defined as

Dik
k = Amaxk

k . · · · .Aik+1
k .Aik

k ,

where Aik
k , A

ik+1
k , . . ., Amaxk

k are column names from the associated dimension table.

This structure represents the ancestry Amaxk
k . · · · .Aik+1

k of descendant Aik
k . For ex-

ample, the domain T 0 has the dot hierarchy structure Year.Quarter.Month, and the

domain T 1 has the dot hierarchy structure Year.Quarter. In the middle of Figure 2.2,

the dot-notation for the Time dimension is represented.

Similarly, a hierarchy instance structure in dot-notation is associated with each

instance dikk ∈ Dik
k .

Definition 2.5. A hierarchy instance structure in dot-notation is defined as

dikk = amaxk
k . · · · .aik+1

k .aikk ,

where aikk ∈ Aik
k , aik+1

k ∈ Aik+1
k , . . ., amaxk

k ∈ Amaxk
k are column entries from the

associated dimension table.

An alternative way of representing Definition 2.5 is dik+1
k .aikk , where dik+1

k are the

ancestors of aikk . For example, d0k = 2009.Q1.January is a dot instance representation

of Year.Quarter.Month from T 0, where d2k = 2009 and d1k = 2009.Q1 are ancestors of

2009.Q1.January.
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2.2.2 Cubes and cells

The key structure in the multi-dimensional database is the data cube.

Definition 2.6. A cube C is defined as the Cartesian product of subsets of available

domains

C = X i1
1 ×X i2

2 × . . .×X in
n , where X ik

k ⊆ Dik
k .

For example, C = {2010, 2011}2 × {Germany}3 × Product2 is an example of a

cube. Additionally, an alternative database representation of a cube is given by

(X i1
1 , X i2

2 , . . . , X in
n ). For example, the alternative notation for the cube in the upper

left of Figure 2.3 on page 29 is given by (Year, Country, ProductLine).

A full cube CF is defined as a special cube, where the cube contains all elements

of its associated domains on some level, i.e. X ik
k = Dik

k . The full cube is specified

on the schema level and is given by CF = Di1
1 × Di2

2 × . . . × Din
n , or alternatively

by (Di1
1 , D

i2
2 , . . . , D

in
n ), or [i] = [i1, i2, . . . , in] in shorthand notation. For example,

Time2× Location3×Product2, T 2×L3×P 2, or [2, 3, 2] in shorthand, and so on, are

full cubes in the example of Figure 2.3. Notice that according to this definition also

a single dimension hierarchy is composed out of full cubes, e.g. the left hand side of

Figure 2.2 shows the full cubes that make up the Time dimension.

A cube C is composed out of one or more cells.

Definition 2.7. A cell c is defined as an instance element of a cube C

c = (di11 , d
i2
2 , . . . , d

in
n ),

where di11 ∈ X i1
1 , di22 ∈ X i2

2 , . . ., dinn ∈ X in
n .

For example, (2006, United States, Golf Equipment) is a cell in the upper left cube

Time2 × Location3 × Product2 of Figure 2.3. The total number of cells in a cube C

is |C| = |X i1
1 | × |X i2

2 | × . . .× |X in
n |.

The instances at the lowest dimension levels of each of its domains are cells of

a special cube, called the base cube CB = X0
1 × X0

2 × . . . × X0
n = [0, 0, . . . , 0]. For

example, in the financial database described in Example 2.1.1 the full base cube

is represented by Time0 × Location0 × Product0 × Customer0 × Vendor0 or al-

ternatively as (Month, Product, Name, CustName, VendName). The base cube
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can be aggregated to higher hierarchical levels. When all dimension hierarchies

are aggregated to the highest level, we derive the 0-dimensional apex or top cube

CT = Xmax1
1 ×Xmax2

2 × . . .×Xmaxn
n = [max1,max2, . . . ,maxn]. The top cube consists

of only one cell (All, All, . . . , All). Notice that aggregating a dimension hierarchy to

Dmaxn
n is similar to removing it from the cube.

2.2.3 Navigational operators

With navigational operations the business analyst can manual explore OLAP cubes,

allowing interactive querying and analysis of the data. Usually, a large number of

records is stored in the fact table. Therefore, operations exist to materialize different

views on the data and summarize measures in meaningful ways. By applying suitable

operators, the level of detail is altered and lower level cubes are mapped to higher

level cubes and vice versa. Often multiple operators are combined in one OLAP

analysis. The results of an OLAP operation are usually stored in presentation tools,

like reports and graphs, for the decision-maker. The navigational operators or queries

for cubes are drill-down, roll-up, slice, unslice, matrix slice, and matrix unslice, they

are defined in Definitions 2.8 to 2.13.

Definition 2.8. The drill-down operator in dimension q, given by R−1q , is defined as

R−1q (X i1
1 × . . .×X iq

q × . . .×X in
n ) = X i1

1 × . . .× r−1(X iq
q )× . . .×X in

n .

Drill-down de-aggregates a cube to a lower dimension level. For example, a drill-down

operation R−1Time on the Time dimension from the level Year to the level Quarter,

applied to the full cube Time2 × Location3 × Product2 results in the full cube Time1

× Location3 × Product2.

Definition 2.9. The roll-up operator in dimension q, given by R+1
q , is defined as

R+1
q (X i1

1 × . . .×X iq
q × . . .×X in

n ) = X i1
1 × . . .× r+1(X iq

q )× . . .×X in
n .

Roll-up aggregates a cube along one or more dimension hierarchies to a higher dimen-

sion level. For example, a roll-up operation R+1
Time on the full cube Time2 × Location3

× Product2 results in the full cube Time3 × Location3 × Product2. Obviously, drill-

down and roll-up are the inverse of each other: R+1
q (R−1q (C)) = R−1q (R+1

q (C)) = C.
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With these operators, we can determine the parents and children of a cube C.

A parent cube C ′ is determined as the result of the roll-up operation R+1
q (C) = C ′

and reversely a child cube C is determined as the result of the drill-down operation

R−1q (C ′) = C. A cube C might have multiple parent cubes, i.e. each applicable roll-

up operation on C gives a parent cube. For example, the cube C = [i1, . . . , iq, . . . , in]

has [i1 + 1, i2, . . . , in], [i1, i2 + 1, . . . , in], . . ., [i1, i2, . . . , in + 1] as its parent cubes,

corresponding to all the different roll-up operations. Oppositely, a cube C might have

multiple child cubes, i.e. each applicable drill-down operation on C gives a child cube.

For example, the cube C has [i1−1, i2, . . . , in], [i1, i2−1, . . . , in], . . ., [i1, i2, . . . , in−1]

as its child cubes, corresponding to all the different drill-down operations. Cubes

with the same parent are siblings of each other.

Drill-down and roll-up operations are commutative.

Lemma 2.2.1. (Commutativity of drill-down operators). R−1p ◦ R−1q (C) = R−1q ◦
R−1p (C) for any pair of drill-down operations.

Proof: This follows immediately from Definition 2.8. �

Commutativity between drill-down operators in the general situation of more than

two dimensions, where C = Di1
1 ×Di2

2 × . . .×Din
n is a straightforward generalization

of Lemma 2.2.1, denoted by

R−i11 ◦R−i22 ◦ . . . ◦R−inn (C) = R−inn ◦ . . . ◦R−i22 ◦R−i11 (C)
= R−i11 ◦ (R−inn ◦ . . . ◦R−i22 (C))
= R−i11 ◦R−i22 ◦ (R−inn ◦ . . . ◦R−i33 (C))
= . . .
= R−i11 ◦R−i22 ◦ . . . ◦ (R−inn (C))
= R−i11 ◦R−i22 ◦ . . . ◦R−inn (C),

where R−nq = R−1q ◦R−1q ◦ . . . ◦R−1q and q = 1, 2, . . . , n.

Lemma 2.2.2. (Commutativity of roll-up operators). R+1
p ◦R+1

q (C) = R+1
q ◦R+1

p (C)

for any pair of roll-up operations R+1
p ◦R+1

q .

Proof: This follows immediately from Definition 2.9. �

Definition 2.10. Slice is defined as

SXq=Yq(X i1
1 × . . .×X iq

q × . . .×X in
n ) = X i1

1 × . . .× Y iq
q × . . .×X in

n ,

where Y
iq
q ⊂ X

iq
q .
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Slice performs a selection on the dimension level instances within a single domain

of the cube, resulting in a subcube. For example, a slice operator with criterion

(Year=“2011”) on the full cube SYear = 2011 (Year × Country × Product) results in

the subcube 2011 × Country × Product, or represented similarly as (2011, Country,

Product). By definition combinations of slice operators are commutative SXq=Yq

(SXp=Yp(C)) = SXp=Yp(SXq=Yq(C)).

In addition, the dice operator - which performs a selection on the dimension

level instances within multiple domains of the cube - is defined as a composition of

slice operators. For example, the following dice operator SYear = 2009 (SCountry = USA

(SProduct = Golf equipment (Year × Country × Product))) results in the cell (2009, United

States, Golf Equipment), where all elements are instances.

Definition 2.11. Unslice is defined as

UXq=Dq(X i1
1 × . . .×X iq

q × . . .×X in
n ) = X i1

1 × . . .×Diq
q × . . .×X in

n .

Unslice transforms one domain of the cube from the instance level to the schema level.

It is the reverse of a slice. For example, an unslice operator with criterion Year on

the cube UYear(2011 × Country × Product) results in the full cube Year × Country

× Product.

Definition 2.12. Matrix slice is defined as

SA
iq
q =a

iq
q (X i1

1 × . . .× A
maxq
q . · · · .Aiq+1

q .A
iq
q × . . .×X in

n ) =

X i1
1 × . . .× A

maxq
q . · · · .Aiq+1

q .a
iq
q × . . .×X in

n ,

where a
iq
q ∈ A

iq
q .

Matrix slice performs a specific selection on a dimension level instance within a hie-

rarchy, as described in Definition 2.4. Additionally, A
maxq
q . · · · .Aiq+1

q .A
iq
q might be

sliced on any other element of its ancestry. For example, the matrix slice opera-

tion SMonth = January (Year.Quarter.Month × Country × Product) results in the cube

Year.Quarter.January × Country × Product.

Definition 2.13. Matrix unslice is defined as

Ua
iq
q =A

iq
q (X i1

1 × . . .× a
maxq
q . · · · .aiq+1

q .a
iq
q × . . .×X in

n ) =

X i1
1 × . . .× a

maxq
q . · · · .aiq+1

q .A
iq
q × . . .×X in

n .
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Matrix unslice is the reverse of a matrix slice. For example, the matrix unslice opera-

tion UMonth (2009.Q1.Jan × Country × Product) results in the cube 2009.Q1.Month

× Country × Product.

In addition, we verify for other combinations of navigational operators whether

they commute with each other or not. The drill-down (roll-up) operator and the

(matrix) slice operator between two dimensions Dp and Dq are commutative, i.e.

SXq=Yq(R−1p (C)) = R−1p (SXq=Yq(C)), (2.1)

and the roll-up (drill-down) operator and the (matrix) unslice operator are commu-

tative as well, i.e.

UXq=Dq(R+1
q (C)) = R+1

q (UXq=Dq(C)). (2.2)

In a single dimension Dp commutativity holds for the drill-down operator and the

(matrix) slice operator but not for the roll-up operator and the (matrix) unslice

operator.

Example 2.2.2. The following two successive operations on some cube C given by

Year × Country result in the cube C ′ given by 2009.Quarter × Country:

• a drill-down followed by a matrix slice, i.e.

SYear=2009(R−1Time(C)) = C ′,

• and, a slice followed by a drill-down, i.e.

R−1Time(S
Year=2009(C)) = C ′.

Furthermore, other OLAP operations are rank, i.e. order the data points in the

cube’s cells in a specified order, and pivot, i.e. rotate the data axes of the cube.

We refer to Han and Kamber (2005) for an elaborate overview on these navigational

operators. We illustrate the working of the operators on the running-example of the

multi-dimensional financial database.

Example 2.2.3. Figure 2.3 shows the three-dimensional financial cube T2 × L3 × P2

derived from Example 2.1.1 and the effect of a number of roll-ups on the cube. The
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cube contains the sports equipment sales data of a global chain store, the GoSales-

company, collected for different countries over the past years. The cube in the north-

west visualizes the result of the slice operator SProductLine = Golf Equipment(T 2×L3×P 2)

with a dark grey color. Notice that this selection ‘slices of’ a part of the cube.

Moreover, the result of a specific dice operator, the cube 2006 × United States ×
ProductLine is visualized with a light grey color. Notice that due to the dice a row

in the cube is selected.

Definition 2.14. The context of a cell c is defined as the cube C after the application

of one or more (matrix) unslice operations on the cell c of the form Udq=Dq(c) = C.

Obviously, a cell has many context cubes, dependent on the number of domains and

hierarchies of the cube. If a cell is unsliced over all its associated domains, we ob-

tain the full cube as the cell’s context. For example, the cell (2006, United States,

Golf-Equipment) in Figure 2.3 might be unsliced, with the operations: UYear, UCountry,

UProductLine, or any combination of these operators, to its various context cubes. More-

over, the maximum number of context cubes an arbitrary cell can be (matrix) unsliced

to is:

T = (
n∏

i=1

2li)− 1, (2.3)

where li is the number of levels of dimension i (excluding the top-level All).

Example 2.2.4. Suppose that (2009.Q2, Germany) is a cell in the full cube Year.Quar-

ter × Country then Year.Q2 × Country is an example context cube and the total

number of context cubes is (22 · 21)− 1 = 7.

2.2.4 Aggregation lattice

Given a cube C and a set S of roll-up operators we can generate an aggregation lattice

L of cubes by applying all possible subsets of S to the cube C. The minimal element

of L is C and the maximal element of L is the cube where all operators in S are

applied to C. The minimal element is also called the base cube of the lattice and the

maximal element is the top cube. This is stated more formally in Definition 2.15.
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Figure 2.3: The cube T 2×L3×P 2 represents the example financial database with the
measure profit and the dimensions Time, Location, and Product in the north-west.
The effects of roll-up and drill-down operations on the financial cube are depicted in
the other figures. In the figures it can be seen that the cube T 2 × L3 × P 2 can be
rolled up via R+1

Product, R
+1
Year, and R+1

Country or via R+1
Year, R

+1
Product, and R+1

Country to the
cube T 3 × L4 × P 3, which is equivalent with the cell (All, All, All). Moreover, it can
be seen that the cube T 3 × L3 × P 3 is drilled down to the cube T 2 × L3 × P 3 with
the operation R−1Year. In the north-west cube the result of a slice and dice operation is
visualized, see Example 2.2.3 for a description. The figure is adapted from (Han and
Kamber, 2005).
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Definition 2.15. Given a cube C = X i1
1 × X i2

2 × . . . × X in
n and integers Ik ≥ 0 for

k = 1, 2, . . . , n we define the lattice of cubes

L = {X i1+j1
1 ×X i2+j2

2 × . . .×X in+jn
n | 0 ≤ ji ≤ Ii, for i = 1, 2, . . . , n}.

The lattice L can alternatively be denoted by

L = {R+j1
1 ◦R+j2

2 ◦ . . . ◦R+jn
n (C) | 0 ≤ ji ≤ Ii, for i = 1, 2, . . . , n}. (2.4)

Notice that the lattice structure of (L,≤) is isomorphic to the lattice of indices defined

by

{[j1, j2, . . . , jn] | 0 ≤ ji ≤ Ii, for i = 1, 2, . . . , n},
where the partial ordering is defined by

[l1, l2, . . . , ln] ≤ [k1, k2, . . . , kn] iff li ≤ ki for i = 1, 2, . . . , n.

Figure 2.4 depicts a simple lattice with n = 3, I1 = 1, I2 = 1, and I3 = 1. If CB

is the base cube in the hierarchy of the OLAP structure and if we apply all possible

roll-ups to CB we get the complete lattice of cubes Lmax, where CB = [0, 0, . . . 0] is

the base cube and CT = [max1,max2, . . . ,maxn] is the top cube. The total number

of cubes in the lattice Lmax is (Han and Kamber 2005)

|Lmax| =
n∏

k=1

(Imaxk + 1). (2.5)

The downset {↓ C} of a cube C in a lattice L is the set of all cubes that can be

obtained by applying drill-down operators on C. Or alternatively,

{↓ C} = {C ′ ∈ L|C ′ ≤ C}, (2.6)

and the upset is defined analogously

{↑ C} = {C ′ ∈ L|C ′ ≥ C}. (2.7)

Given two cubes C and C ′ we define their join as follows

∨
(C,C ′) = min{E|E ≥ C and E ≥ C ′}, (2.8)
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i.e. the smallest cube in the intersection of {↑ C} and {↑ C ′}. Similarly, we define

the meet of two cubes C and C ′

∧
(C,C ′) = max{E|E ≤ C and E ≤ C ′}, (2.9)

i.e. the largest cube in the intersection of {↓ C} and {↓ C ′}.
Example 2.2.5. In Figure 2.4 an example lattice L with the 3-dimensional cube CB =

[0, 0, 0] at level 0 as its base and CT = [1, 1, 1] at level 3 as its top. In this lattice it

can easily be observed that all cubes can be derived from CB, by the application of

one or more roll-up operations in a specific order.

Figure 2.4: The lattice of cubes L is formed by rolling-up the base cube [0, 0, 0] over
all its domains and dimension hierarchies, in any order, to the top [1, 1, 1] (left). An
analysis path is projected in the lattice (right). This path is formed by rolling up the
cell x000(k, l,m) over the path [0, 0, 0]→ [1, 0, 0]→ [1, 0, 1]→ [1, 1, 1] (right) in L. In
this way a path from x000(k, l,m) to y111(All, All, All) is created.

In general, we can determine a specific ancestor (descendant) of a cube C by the

application of a number of roll-up (drill-down) operations in L. If Cp and Cq are two

cubes in L, where Cp ≤ Cq, then Cq is an ancestor of Cp, and Cp is a descendant
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of Cq. Obviously, in L the base cube CB has no children and the top cube CT has

no parents, by definition. The aggregation lattice L can now alternatively be defined

as a partially ordered set in which any two cubes have an unique join (i.e. smallest

common ancestor) and meet (i.e. largest common descendant). The downset of a

cube C in L is the set of all its descendants and the upset of the cube C in L is

the set of all its ancestors. Moreover, L is a bounded lattice because is has a least

element, the base cube CB, and a maximum element, the top cube CT . A property of

the base cube CB is that all cubes in L can be obtained from it by applying roll-up

operations in a specific order. Conversely, a property of the top cube CT is that all

cubes in L can be obtained from it by applying drill-down operations in a specific

order.

Furthermore, we define the level of a cube C as the number of roll-ups that must

be applied to CB to get C (see Figure 2.4).

Example 2.2.6. In the lattice depicted in Figure 2.4, the upset of cube [0, 1, 0] is given

by {↑ [0, 1, 0]} = {[0, 1, 0], [1, 1, 0], [0, 1, 1], [1, 1, 1]} and is obtained by the following

roll-up operations R+1
D1
([0, 1, 0]),R+1

D3
([0, 1, 0]), and R+1

D1
(R+1

D3
([0, 1, 0])). In the same

lattice, the downset of cube [1, 1, 0] is given by {↓ [1, 1, 0]} = {[1, 1, 0], [1, 0, 0], [0, 1, 0],
[0, 0, 0]} and is obtained by the following drill-down operations R−1D2

([1, 1, 0]), R−1D1

([1, 1, 0]), and R−1D1
(R−1D2

([1, 1, 0])). It can easily be seen that {↓ [1, 1, 0]} is a sublattice

L′ in L with base cube [0, 0, 0] and top cube [1, 1, 0].

2.2.5 Analysis paths

The business analyst working with the multi-dimensional database can create an

analysis path in L by the application of navigational operators.

Definition 2.16. An analysis path p is defined as a sequence of cubes in L, such that

each of its cubes is a drill-down (roll-up) of its parent cube in the sequence.

The length of a path is the number of drill-down operations that is used in the

path. In the path p(C,C ′), the cube C is the start cube and C ′ is its end cube. If

C = [i1, i2, . . . , in] and C ′ = [j1, j2, . . . , jn] are cubes in L where C ≤ C ′, then the

length of the path is |p(C,C ′)| = (i1 + i2 + . . .+ in)− (j1 + j2 + . . .+ jn). Notice that

all paths from C to C ′ have the same length.
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Moreover, an analysis path p can be represented as a binary analysis matrix where

the columns represent the dimensions of the cube from D1, D2, . . . , Dn and the rows

represent the levels of the lattice L from level (i1+ i2+ . . .+ in) to level (j1+j2+ . . .+

jn)+1. Each row in the matrix has one cell with the value −1, that represents a single
drill-down in dimension Dq from one level to the next in L, the other cells in the row

have the value 0. The first row in the matrix corresponds with the first drill-down

operation in some dimension from level (i1+i2+. . .+in) to level (i1+i2+. . .+in)−1, the
second row in the matrix corresponds with the second drill-down operation in some

dimension from level (i1 + i2 + . . .+ in)− 1 to level (i1 + i2 + . . .+ in)− 2, and so on,

until the last row in the matrix.

Obviously, there are usually multiple paths in L from its top to its base, or vice

versa, corresponding with different analyses that might be created by the analyst. For

example, in the lattice of cubes depicted in Figure 2.4, the following sequence of drill-

down operations from CT to CB, R
−1
D2
(CT ), R

−1
D3
(R−1D2

(CT )), and R−1D1
(R−1D3

(R−1D2
(CT ))),

creates the drill-down path [1, 1, 1] → [1, 0, 1] → [1, 0, 0] → [0, 0, 0]. This path repre-

sented in matrix notation is given by

D1 D2 D3

level 3
level 2
level 1

⎛
⎝ 0 −1 0

0 0 −1
−1 0 0

⎞
⎠.

Another drill-down path from CT to CB in this figure is given by [1, 1, 1]→ [0, 1, 1]→
[0, 0, 1]→ [0, 0, 0]. Reversely, an example of a roll-up path from CB to CT is given by

[0, 0, 0]→ [0, 0, 1]→ [0, 1, 1]→ [1, 1, 1].

The total number of analysis paths P in L can be very large. Suppose that nk is

the number of possible levels in dimension k. Then the length of a drill-down from

CT to CB is given by n1 + n2 + . . .+ nk.

Theorem 2.2.3. The total number of drill-down paths from CT to CB is

P =
(n1 + n2 + . . .+ nk)!

n1!n2! . . . nk!
. (2.10)

Proof: If in some drill-down path p(CT , CB) the order of the drill-down operators is

changed, we get a different path. Accordingly, the number of paths would be equal
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to the number of permutations of the sequence of drill-down operators: (n1 + n2 +

. . .+ nk)!. However, there is no change if two operators are interchanged that act on

the same dimension, therefore we have to divide by n1!n2! . . . nk!.

Example 2.2.7. Figure 2.5 provides an illustration. The figure depicts two example

lattices. The number of drill-down analysis can be computed using formula (2.10).

Figure 2.5: In the example lattice on the left hand side there are P = 2!/1!1! = 2
drill-down paths, where n1 = 1 and n2 = 1, and in the example lattice on the right
hand side there are P = 2!/2! = 1, where n1 = 2.

Example 2.2.8. Suppose we have 4 dimensions where each dimension has three levels.

The base cube of the lattice of cubes is CB = [0, 0, 0, 0] and the top is CT = [3, 3, 3, 3].

The length of a path p from the top to the base is 3+ 3+3+3 = 12 and the number

of paths from CT to CB is 12!/3!3!3!3! = 479, 001, 600/1, 296 = 396, 600.

2.2.6 Measures

The measures are derived from the column names of the star scheme’s fact table, and

the measure values are entries of the fact table.

Definition 2.17. A measure y is defined as a function on a cube C

yi1i2...in : Di1
1 ×Di2

2 × . . .×Din
n → X,

where measure values are X = N, Z, or R.

We sometimes use the term variable instead of measure.
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Data are the measure values of a measure y in a particular cell like, for example,

profit232 (2006, United States, Golf Equipment)= 130, 948. The combination of a

cell and a measure is called a data point. Each cube C can be viewed as a specific

collection of cells, where we can store measure values. The measure’s upper indices

indicate the level of its cube or cell, i.e. the measure yi1i2...in(C) is a function on the

cube C = [i1, i2, . . . , in]. For example, profit232 is a measure on the cube T 2×L3×P 2

in Figure 2.3. If necessary, we use the shorthand notation yi(C) for yi1i2...in(C) where

i = i1i2 . . . in or the shorthand notation yiq(C) for yi1...iq ...in(C), where Dq is some

arbitrary dimension Dq. Besides, if no confusion can arise we will leave out the upper

indices, and write profit(2006,United States,Golf Equipment).

Furthermore, if a measure is not defined for a particular cell then yi(c) = ∅. We

call such a cell an empty cell or missing value. Empty cells in an OLAP cube can

have various causes (Thomsen 1997). For example, data for a cell can be missing but

also forthcoming, like a late sales report. In some situations an empty cell means that

data can never apply to the cell, such as the name of a bachelor employee’s spouse.

In other situations an empty cell means that zeros are being “suppressed” like the

zero associated with individual product sales in a store that carries many products

but that only sells 5% of its items on any one day.

In summary, we presented an original, generic notation in Section 2.2 to capture

the structures of the dimension table and the fact table in the star model. In the first

place, the concept of a domain Dik
k represents the dimension table, the dimension

hierarchy schema represents the table’s column names, and the dimension hierarchy

instances represent the entries of this table. From these notions we compose the

concept of a cube C = [i1, i2, . . . , in] that lives in an aggregation lattice L. Each cube

in L can be manipulated by set of navigational operators. In the second place, the

concept of a measure yi(C) represents the fact table’s column names and the measure

values represent the entries of this table. In particular, a measure is defined as a

function on a cube C. In this way, a measure is connected with a cube, consistent

with a fact table that is connected with a set of the dimension tables. Correspondingly,

a multi-dimensional database can be interpreted as a lattice of cubes specified by the

star scheme.
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2.3 OLAP equations

The cell values of the base data cube are denoted by y00...0(CB). From y00...0(CB) the

measures can be aggregated by typical aggregation functions to higher levels. These

functions are SUM(y(C)), COUNT(y(C)), MAX(y(C)), MIN(y(C)), and AVG(y(C)),

and are implemented in most OLAP software packages. For example, the measure

profit may be aggregated over the Time dimension of Figure 2.2, with the SUM(y(C))

function from the monthly profit on T 0 to the quarterly profit on T 1 or the yearly

profit on T 2. In general, aggregating measure values in yi1i2...in(C) with some function

along the hierarchies of different domains in its upset creates multi-dimensional views

on the data.

The application of a specific aggregation function f on the measure values of each

cube y(C) in L creates a system of drill-down equations, given by

yi1...iq ...in(C) = f(yi1...(iq−1)...in(R−1q (C))). (2.11)

In the above system of equations we distinguish between base and non-base vari-

ables.

Definition 2.18. The measure values y00...0(c) in the base cube CB are called the

base variables.

A base variable is sometimes denoted by x(c) to distinguish them clearly from depen-

dent variables. Obviously, base variables are non-aggregated and are directly derived

from the star model’s fact table. The total number of base variables y00...0(c) = ∅ in

CB, corresponds with the number of rows in the fact table. A non-base or dependent

variable yi1i2...in(c) where i1 + i2 + . . . + in > 0 can be computed by using Equation

(2.11) repeatedly.

Definition 2.19. ymax1max2...maxn(CT ) is defined as the root variable.

The root variable is a non-base variable that only appears on the LHS of an equation

in (2.11).

If we consider a sublattice L′ of L we derive a subsystem of drill-down equations.

In this subsystem we call variables y00...0(c) in the base cube C ′B, i.e. the base of the
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L′ re-indexed to [0, 0, . . . , 0], the subsystem’s base variables. All other variables are

called the subsystem’s non-base variables.

In Figure 2.6, a graphical representation of a system of drill-down equations is

shown. In this figure, the lattice of cubes in Figure 2.4, is instantiated for base

variables x(c) in CB = [0, 0, 0]. This system is composed out of 27 equations with

8 base variables and 19 non-base variables. Each separate equation in the system is

denoted in the figure by a small arc ‘�’ between the edges.

Figure 2.6: Graphical representation of a system of drill-down equations. The result
of the instantiation is a semilattice with top y(CT ) and base variables x(c). The upset
of each base variable x(c) forms a lattice with y111(CT ) as its top.

Suppose we have a lattice L where a measure y, aggregated by some function

f , is instantiated from the schema level to the instance level. The result of the

instantiation is a semilattice SL with multiple base elements and a single top. Each

base variable x(c) in the base cube CB represents a base element of SL. The root

variable ymax1 max2...maxn(CT ) represents the top element in SL. The instantiated

system of equations constitutes a semilattice because any two measure values y(cp)

from cube Cp and y(cq) from cube Cq in it have an unique smallest common ancestor,

i.e. it is an ancestor-semilattice. However, it is not a full lattice, see Definition 2.15,

because not any two measures values y(cp) from cube Cp and y(cq) from cube Cq have

an unique largest common successor.
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In SL, the upset {↑ c} of a cell c is defined as the set of all its ancestor cells and

the downset {↓ c} of a cell c is the set of all its descendant cells. Basically, SL is

composed out of a set of related lattices, because the upset of each cell c forms a

lattice L (see Definition 2.15), where the cell c is the base cell and CT is the root cell.

In Figure 2.6, the upset {↑ (a1, b1, c1)} is represented graphically with dashed lines to

provide an illustration. This illustration shows that {↑ (a1, b1, c1)} is a lattice with

base cell (a1, b1, c1) and root cell CT . Furthermore, in SL the downset of each cell c

forms a semilattice, where the cell c is the root cell and a subset of descendant cells

from CB represent its base elements.

2.3.1 Drill-down equations

This section considers the most common types of aggregations of (2.11); the ad-

ditive SUM(y(C)) and COUNT(y(C)) function, and the non-additive AVG(y(C)),

MAX(y(C)) and MIN(y(C)) function.

Additive drill-down equations

Definition 2.20. The measure y is an additive measure if for every cell c ∈ C, we

have

yi1...iq ...in(c) =
∑

c′∈R−1
q (c)

yi1...(iq−1)...in(c′). (2.12)

In words, the value of the measure of cell c is the sum of the values of the children of

c in any dimension (see also Lenz and Shoshani (1997)). Equation (2.12) can also be

written on the functional level as

yi1...iq ...in(C) =
∑

C′∈(Sq(R
−1
q (C)))

yi1...(iq−1)...in(C ′), (2.13)

where the sum is over the slices of the cube R−1q (C) in the dimension q.

Example 2.3.1. From our example database, we could inspect the measure revenues

as a function on the subcube C, given by 2011 × All-Locations × Productline. This

cube is part of the lattice L with cubes revenues(C), formed by rolling-up with the
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SUM(revenues(C)) aggregation function. By applying Equation (2.13) two times we

get

revenues242(C) =
∑
k

revenues142(Sk
Year(R

−1
Year(C)))

=
∑
l

∑
k

revenues132(Sl
Location(R

−1
Location(S

k
Year(R

−1
Year(C))))).

The same equation on the cell level reads

revenues242(2011,All-Locations,Golf-Equipment) =
4∑

j=1

20∑
k=1

revenues132(2011.Quarterj,Countryk,Golf-Equipment),

where Sj(2011.Quarter) = 2011.Quarterj.

Moreover, if there is no confusion about the level in the lattice or dimension

hierarchy we occasionally use the short-hand notation y(. . . ,+, . . .) for an additive

measure, for the LHS of Equation (2.13), where the plus sign signifies summarization

over that dimension.

The additive COUNT(y(C)) function is defined similarly, and treated as a spe-

cial case of the SUM(y(C)) function, only this operator summarizes dimension hi-

erarchy instances instead of measure instances. Basically, this function counts the

number of instance elements in the base cube [0, 0, . . . , 0] for the downset of variable

yi1i2...in(d1, d2, . . . , dn). For example, the function is used to compute the number

of products per P[ProductLine] or P[ProductType] or the number of employees per

Country or City. The COUNT(y(C)) function can also be interpreted as an additive

measure where all values on the base level are 0 or 1.

For any two cubes C and C ′ ∈ {↓ C} we may consider the set of all drill-down

paths from C to C ′ P (C,C ′) and the lattice L of all cubes in P (C,C ′) (see Definition

2.15). This lattice has a top cube CT = C and base cube CB = C ′. Along any path

from CT to CB we can apply Equation (2.12) repeatedly to the cells of the cubes in

the drill-down sequence of the path. In doing so, the value of an additive measure

in the cube C in the sequence, is expressed as a sum over its values on the cells of a

child cube down in the hierarchy.

This typical OLAP feature is expressed in the following theorem.
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Theorem 2.3.1. The measure values of the top cube’s cell can be expressed as the

sum of the measure values of the base cube’s cells

ymax1 max2...maxn(c) =
∑

cn∈R−maxn
n ◦...◦R−max2

2 ◦R−max1
1 (c)

x(cn), (2.14)

where R−maxn
n ◦ . . . ◦ R−max2

2 ◦ R−max1
1 (CT ) = CB is a drill-down path from CT to

CB, (n = max1 +max2 + . . . + maxn), c is a cell in CT and cn ∈ CB. Furthermore,

expression 2.14 is independent of the drill-down path chosen from CT to CB.

Proof. By applying Equation 2.12 repeatedly on a cell c ∈ CT we get

yn(c) =
∑

c1∈R−1
1 (c)

yn−1(c1)

=
∑

c1∈R−1
1 (c)

∑
c2∈R−1

2 (c1)

yn−2(c2)

= . . .
=

∑
c1∈R−max1

1 (c)

∑
c2∈R−max2

2 (c1)

· · · ∑
cn∈R−maxn

n (cn−1)

y0(cn)

=
∑

cn∈R−maxn
n ◦...◦R−max2

2 ◦R−max1
1 (c)

x(cn).

Here ci are cells on level n − i, i = 1, 2, . . . , n. If we choose another path from CT

to CB only the order of the drill-down operators changes in expression 2.12. But by

commutativity of the drill-down operator (Lemma 2.2.1) this results in the same sum.

It is only the order of summation that changes along different drill-down paths. �

Remark 2.3.1. From Theorem 2.3.1 it follows that the system of additive drill-down

equations is uniquely solvable.

Remark 2.3.2. If CT is the top cube of the whole lattice and consists of a single cell,

then the sum in expression 2.14 extends over all cells in the base cube and is the

grand total.

Example 2.3.2. We illustrate Theorem 2.3.1 with an example. In Figure 2.6, we show

the composition of the value of the additive measure y101 in cell (b1) into two drill-

down equations related to the path p([1, 0, 1], [0, 0, 0]), specified in detail as [101] →
[100]→ [000]

y101(b1) = y100(b1, c1) + y100(b1, c2)

= x(a1, b1, c1) + x(a2, b1, c1) + x(a1, b1, c2) + x(a2, b1, c2).
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Here the final equation is the expression of y101(b1) into the sum of an unique set of

base variables. If we would select a different path p([1, 0, 1], [0, 0, 0]), i.e. the path

[101] → [001] → [000], we would get the same expression, because this result is

independent of the selected path.

Additivity criteria

Additivity is an important criterion for the quality of multi-dimensional database

design because it ensures the correctness of aggregations. The violation of this condi-

tion can lead to erroneous conclusions and decisions. Both Horner et al. (2004) and

Lenz and Shoshani (1997) have studied additivity in OLAP databases and statistical

databases respectively.

Horner et al. (2004) make a distinction between additive, semi-additive and non-

additive measures. In Kimball (1996) it is argued that the “the most useful facts

are numeric and additive”. Additive measures have the property that they can be

meaningfully aggregated along any dimension. For example, it makes sense to add

total sales for the Product, Location, and Time dimension because this causes no

overlap among the real-world phenomena that generated the individual sales. A

measure is semi-additive if it is only additive across certain dimensions, but not

all. For example, the measure stock-at-hand cannot be aggregated along a Time

dimension because they represent a “snapshot” of a level or balance at one point in

time. But this measure can be aggregated along a Product dimension and return a

valid total. In practice, multi-dimensional databases are littered with non-additive

measures. Percentages and ratios are examples of non-additive measures.

The structure of the dimension hierarchy is of central concern with respect to

additivity, because the primary method of rolling-up and drilling-down data is along

these pre-defined hierarchies. Therefore, two standard requirements are that dimen-

sion hierarchies have to be strict and complete (Lenz and Shoshani 1997). Most

multi-dimensional data models as well as the one used in this thesis demand that

the hierarchies of a dimension are strict. This means that there exists a many-to-

one relationship between the level instances of two dimension levels Dq+1
i and Dq

i ,

with Dq
i ≺ Dq+1

i , to ensure correct aggregation of measure values (Lenz and Shoshani

1997). The term completeness in dimension hierarchies means that all children of a
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parent in the hierarchy tree are accounted for, i.e., that there is no missing or in-

accurate data. In addition, other additional requirements for additivity placed on

dimension hierarchies in multi-dimensional data models are that they have to be onto

and covering, see Pedersen et al. (1999) for more detail.

Non-additive drill-down equations

Other examples of non-additive measures include measures that are derived by using

an aggregation function like AVG(y(C)). For instance, in the health care domain,

it is often important to analyse the number of patients admitted to a hospital, like

the average number of hourly admissions. The average number of hourly admissions

cannot be combined along any dimension, because the aggregation function prevents

combining lower-level averages to higher level averages. A formal definition runs as

follows:

Definition 2.21. The measure y is an average measure if for every cell c ∈ C, where

C is a cube in the lattice L, the following holds

ȳi1...iq ...in(c) =
1

|R−1q (c)|
∑

e∈R−1
q (c)

yi1...(iq−1)...in(e). (2.15)

If Definition 2.21 is instantiated for a single cell (. . . , A, . . .) in cube C then we

obtain its instance representation:

ȳi1...iq ...in(. . . , A, . . .) =
1

J

J∑
j=1

yi1...(iq−1)...in(. . . , A.aj, . . .). (2.16)

where A ∈ D
iq
i is a parent, A.aj ∈ D

iq−1
i is a child, q is some level in the dimension

hierarchy, and J represents the number of level instances in D
iq−1
i .

A typical OLAP feature is expressed in the following theorem.

Theorem 2.3.2. The measure values of the cell of the top cube can expressed as the

average of the measure values of cells of the base cube

ymax1max2...maxn(c) =
1

|CB|
∑

cn∈R−maxn
n ◦...◦R−max2

2 ◦R−max1
1 (c)

x(cn), (2.17)
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where R−maxn
n ◦ . . . ◦ R−max2

2 ◦ R−max1
1 (CT ) = CB is a drill-down path from CT to

CB, (n = max1 + max2 + . . . + maxn), c is a cell in CT and cn ∈ CB. Furthermore,

expression 2.17 is independent of the drill-down path chosen from CT to CB.

The proof of Theorem 2.3.2 is similar with the proof of Theorem 2.3.1 with the

difference that the RHS of each drill-down equation is divided by the number of cells

of the cube under consideration.

For completeness we mention two other non-additive measures. The maximum

measure is

yi1...iq ...in(c) = max(yi1...(iq−1)...in(R−1q (c))), (2.18)

and the minimum measure is

yi1...iq ...in(c) = min(yi1...(iq−1)...in(R−1q (c))). (2.19)

The measure in the top cube is the maximum respectively minimum of all the

values in the base cube, denoted by

ymax1max2...maxn(c) = max
c∈CB

x(c), (2.20)

and

ymax1max2...maxn(c) = min
c∈CB

x(c). (2.21)

2.3.2 Relations between measures

The measures that can be analysed by the same set of domains Di1
1 ×Di2

2 × . . .×Din
n

are described by the fact table in the OLAP database. A business model M is a

system of relations between measures in this table. This model represents relevant

financial and operating variables and relations between them. These relations can be

derived from many business domains, like finance, accounting, logistics, and so forth.

Definition 2.22. Relations between measures are denoted by

yi(C) = f(xi(C)), (2.22)

where y and x = (x1, x2, . . . , xn) are measures on the same cube C = [i1, i2, . . . , in],

as specified in Definition 2.17.
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The function f can have various functional forms here, representing a business model

with (mixed) relations that are additive, multiplicative, ratio, and so on. A system

of business model equations, where each equation is of type (2.22) is denoted by M .

Business model equations hold for individual cubes. Therefore we may leave out the

upper indices in Equation (2.22). If (2.22) holds for all cubes we may write y = f(x).

Table 1.1 on page 12 depicts relations from the financial database example. For

example, a typical instance of a business model equation

profit(c) = revenues(c)− costs(c)

on aggregation level 233 is given by

profit233(2011, Spain) = revenues233(2011, Spain)− costs233(2011, Spain).

A directed acyclic graph G(M) = (V,E) is associated with M (Feelders 1993).

The vertex set V (M) contains as elements all variables appearing in the model. The

edge set E(M) contains a directed edge from vertex xi to xj iff:

xj = f(. . . , xi, . . .) ∈M.

We assume that the modeled graphG(M) is acyclic. This restriction excludes business

models that contain simultaneous equations. Nodes in the business model graph, with

zero indegree, represent variables that cannot be explained in M . Mp denotes the

level p in the business model, where p = 0, 1, . . . , d. The root of the graph y is on level

0 (M0), the children of the root x1, x2, . . . , xn are on level 1 (M1), the grandchildren

of the root are on level 2 (M 2), and so on, until the deepest level d (Mp=d) where the

nodes do not have children. The depth of the business model d is defined as the total

number of levels in M or the associated directed graph.

The business model graph of the business model represented in Table 1.1, is de-

picted in Figure 2.7. In general, fully-additive measures in the business model M

can be associated with each cube C in the aggregation lattice, because measures are

defined as functions on cubes. A business analysis in M from the LHS to the RHS of

Definition 2.22 for some cube C, results in a “drill-down in the business model” from

yi(C) (M0) to xi(C) (M1).
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Figure 2.7: Business model graph G(M) of measures in a financial database with
depth d = 3.

In summary, various types of business analysis paths are possible in the OLAP

database, involving a) only drill-down equations, b) only business model equations, or

c) both. In a) the analysis is associated with a single lattice L and in b) the analysis

is associated with a single business model M . In c), the situation of a mixed analysis,

drill-down and business model equations are alternated. The result is a structure

where multiple lattices are connected via the business model.

Example 2.3.3. In Figure 2.7, the analysis could start in the cell (2011, United States)

of the cube C = Year × Country for the measure profit on level 233 in L. Subse-

quently, a drill-down equation (1), a business model equation (2), and a drill-down

equation (3), are involved in the (mixed) analysis:

1. profit233(2011,United States) =
4∑

j=1

profit133(2011.Qj,United States),

2. profit133(2011.Q1,United States) =

revenues133(2011.Q1,United States)− costs133(2011.Q1,United States),

3. revenues133(2011.Q1,United States) =
9∑

k=1

revenues123(2011.Q1,United States.Cityk).

In the example, the analysis starts at profit233(2011, United States) and ends at

revenues123(2011.Q1,United States.City) in the lattice, via drill-down R−1Time, the first

business model equation in Table 1.1, and drill-down R−1Location.
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2.4 Related work

In addition to the star schema, many different formal notations and definitions of

multi-dimensional data schemata are found in the literature (Kimball 1996; Agrawal

et al. 1997; Gyssens and Lakshmanan 1997; Cabibbo and Torlone 1998; Lehner

1998; Vassiliadis 1998; Datta and Thomas 1999; Pedersen et al. 2001; Thalhammer

et al. 2001; Caron and Daniels 2007; Kuznetsov and Kudryavtsev 2009; Ciferri

et al. 2013). An in-depth comparison of multi-dimensional data models is provided

by Vassiliadis and Sellis (1999), Pedersen et al. (2001), and Ciferri et al. (2013).

Most of these models are developed for the design and technical implementation of

multi-dimensional databases and not for the analysis of data cubes from a business

user perspective, as in our case. The formal notations show a development from being

purely focused on the description of technical database concepts to a focus on concepts

that are important from a user analysis perspective. We particular introduce drill-

down and business model equations, concepts which are absent in the other notations,

for the purpose of diagnostic analysis.

2.5 Conclusion

In this chapter, we introduced a mathematical notation for the basic components of

the multi-dimensional model: dimensions, dimension hierarchies, full cubes, subcubes,

base cube, top cube, cells, and measures. The notation is coupled with navigational

operators as roll-up, drill-down, slice, and dice.

In addition, we defined a structure in the multi-dimensional model, formed by the

application of aggregation functions of a certain measure: the lattice structure of all

aggregation levels L. The lattice L is formed by aggregating a measure y over all

its associated dimensions and their dimension hierarchies in the data cube. In this

lattice we defined the concepts: sublattice, upset, downset, and analysis path.

Lastly, we discussed two types of equations: drill-down equations for a single

measure and relations between multiple measures. Drill-down equations are formed by

the application of an aggregation function on a measure. Relations between measures

are part of a business model M , representing, for example, financial or sales variables,
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and relations between them.

These concepts lay the foundation for the research objectives in Chapter 1 and

the results in the remainder of the thesis.





Chapter 3

Identification of exceptional values

3.1 Introduction

In this chapter, we consider the problem of finding exceptional cell values in multi-

dimensional databases. In practice, multi-dimensional databases are often too large,

in terms of the number of records in the fact table, and have too many dimensions and

dimension hierarchies for business analysts to browse efficiently and effectively, and

spot exceptional cells in the lattice of cubes manually. Notice that the number of cell

contexts, see Equation (2.3), the number of cubes in the lattice, see Equation (2.5),

and the number of lattice analysis paths, see Equation (2.2.3), grow exponentially fast

when the number of dimensions and dimension hierarchies increase in the analysis.

To deal with this, we develop a method and design an algorithm to detect exceptions

automatically so that analysts can easily identify them, even when the data cube is

very large.

This chapter is organised as follows. In the remainder of this section we intro-

duce the topic of exception identification in multi-dimensional databases and list the

basic concepts related to this topic. In particular, we introduce two specific classes

of normative models: managerial and statistical models, that can be used in multi-

dimensional databases for this purpose. In Section 3.2 we elaborate on various man-

agerial models. In Section 3.3 we describe the general statistical model for OLAP

exception identification and propose a statistical hypothesis test. Subsequently, in

the next two sections we focus on two classes of statistical models. In Section 3.4 we

discuss multi-way ANOVA models and in Section 3.5 we discuss contingency table

49
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models. In Section 3.6 a general algorithm for exception identification is proposed for

an n-dimensional data cube C. We briefly discuss related work on statistical outlier

detection and outlier detection in OLAP databases in Section 3.7. Finally, in Section

3.8 we draw some conclusions.

3.1.1 Definition of exceptional values

Exception identification is a comparison activity by business analysts, based on the

general diagnosis task, as depicted in Figure 1.2. The actual cell data ya(c) in some

context cube C is compared with reference cell data yr(c) in the same cube in order

to detect exceptions. The reference value for the cell is based on some normative

model, which describes or predicts the reference values in C. The normative model

specifies the appropriate reference class R which should be used to compare and the

variables with respect to which the comparison should be made. The reference class

R might describe, for example, the statistical normal case or the temporally normal

case (Feelders and Daniels 2001). The reference object r represents one element from

R.

The process of looking for exceptional cell values is equivalent to the process of

looking for exceptional cell residuals, also known as problem identification or man-

agement by exception reporting (Judd et al. 1981). We now define a cell residual.

Definition 3.1. The residual of a cell ∂y(c) in some context cube C is defined as

the difference between its actual value, ya(c), and some reference value based on a

normative model yr(c), i.e.,

∂y(c) = ya(c)− yr(c).

Intuitively, an exception in a data cube is a cell with a value that is significantly

different from the value we expected for this cell based on some normative model.

The size of ∂y(c) is the exception score for that cell. To determine the exceptions we

have to apply a threshold to the exception scores. If the exception score is significant,

i.e. larger than some threshold, it is viewed as an exceptional value that must be

explained (see Chapter 4). The normative model under consideration and the domain

knowledge related to the origin of the OLAP data, specify the appropriate threshold

δ.
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Definition 3.2. If the cell residual ∂y(c) > δ, an exception score ∂y(c) = high

is added to the list of exceptional cells. Likewise, if the value of ∂y(c) < −δ, an
exception score ∂y(c) = low is added. Otherwise, ∂y(c) = normal.

In this definition, and further in this thesis, the term exceptional cell denotes an ex-

ceptional cell value. The expression ∂y(c) = ya(c)−yr(c) = q where q ∈ {low, normal,

high}, specifies an event, i.e. a symptom, in the data cube. Notice that for the pur-

pose of cell explanation (see Chapter 4), it is not interesting to explain events with

the label ∂y(c) = normal, since it is only required to explain why a cell value deviates

significantly from its reference value.

In conclusion, we combine the above definitions in an algorithm that identifies

exceptions in an OLAP cube. Algorithm 1 lists the basic steps in the exception

identification process.

Algorithm 1 Basic OLAP exception identification algorithm

Consider the cube C on some level [i1i2 . . . in] in the lattice L (see Chapter 2, Defini-
tion 2.6 and 2.15).

1. Compute/Determine the reference values yr(c) for all cells, based on some nor-
mative model R, to obtain yr(C).

2. Compute the residuals ∂y(c) for all cells, as specified in Definition 3.1, to obtain
∂y(C).

3. Compare the residual with the threshold values δ and −δ, as specified in Defi-
nition 3.2, to determine the exceptional cells in the cube.

4. Mark the exceptional cells in the cube.

In diagnostic problem solving, the exception identification process is usually fol-

lowed by an explanation process. This is described in Chapter 4.

3.1.2 Normative models

The normative behaviour in a multi-dimensional database, supporting business deci-

sion-making in a sales, financial or accountancy department, is usually defined by

goals that have been formulated by the management. We will show that suitable
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normative models can be incorporated in a multi-dimensional database, and applied

as a reference class R. In this chapter we discuss two classes of normative models for

exception identification in multi-dimensional databases:

1. R is a managerial normative model. In a study of Pounds (1969), it was found

that managers use several types of managerial models to define their business

goals:

• Planning and budget models, the plan or determined budget is the expec-

tation;

• Historical models, expectation based on extrapolation of past experience

and trends;

• Extra-organizational models, models where expectations are derived from

competition, customers, professional organizations, industry and branch

averages, etc.

2. R is a statistical normative model. Decision-makers may also apply more ab-

stract normative models in the form of statistical models. In this case the ex-

pected behaviour represents the statistically normal case (Feelders and Daniels

2001). We distinguish between two broad classes of statistical models that can

be used in an OLAP database:

• Multi-way ANOVA models, expectations for continuous measures are com-

puted by multi-way ANOVA models;

• Contingency table models, the expectations for discrete measures are com-

puted by the independency model or the log-linear model.

Obviously, different normative models calculate the reference value and the thresh-

old in different ways.

Furthermore, one can distinguish between external and internal normative mo-

dels. External normative model are not directly available in the multi-dimensional

database. These models first have to be stored in, or connected with, the multi-

dimensional database to be applied as a reference object for exception identification.

Planning, inter-organizational, and extra-organizational models, refer to norm values



Identification of exceptional values 53

that are derived from external sources (e.g. the planning system or the census office).

Conversely, historical and statistical models are internal normative models. These

models can be directly based on the data in the multi-dimensional database to form

internal reference objects.

It is clear that the selection of the proper normative model in the OLAP context

for which comparison should be made is fairly situation dependent. The choice for a

particular normative model should be made by the management. Notice that it is not

uncommon to apply multiple types of normative models for exception identification

on the same data cube. Therefore, we have chosen to make the presentation of the

normative model as general as possible, and to allow the model builder to specify

and adapt the parameters of the selected normative model. In the next sections we

discuss how the various normative models can be used in the OLAP context.

3.2 Managerial models

3.2.1 Planning and budget models

When the OLAP analyst is a firm’s manager, the norm values may be the result of

an explicit planning or budgetary control process. A significant difference between

the firm’s actual and planned performance will attract the attention of management,

and will lead to the search for the underlying causes (Feelders 1993).

To apply planning and budget models in OLAP databases, the budgetary con-

trol process must determine reference values for all cells in some cube C, to obtain

yr(C). For example with a simple budget model, the management might impose a

budget decrease of 5% on the cube’s actual results, then reference cells are computed

straightforward with the formula yr(C) = 0.95·ya(C). Moreover, when some planning

or budget model is applied to all cubes in the (sub) lattice L, the budgetary control

process must be as detailed as the values in the base cube Cb. Often it is desired that

yr(C) is an additive measure, as specified in Definition 2.20. From a practical point

this means that planning and budgetary information, from for example accountancy

information systems, should be coupled with the ETL process and incorporated in
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the star model. In this way, budget values are available for all cubes in the aggrega-

tion lattice by definition. For example in Table 3.1, the actual and budget figures are

available for the cell (2001.Q2, department X) in the cube 2001.Quarter × depart-

ment X on level 110 in the aggregation lattice for the measures in the business model

relation: total costs110(C) = wages110(C) + travel110(C) + advertising costs110(C)

+ other costs110(C). The difference between the actual and budget is stored in the

variance cell. When the firm operates a budgetary control system of management by

exception, the attention of managers is focused on those departments and account

items in the OLAP cube, when there is a significant variance from budget.

Table 3.1: Budget, actual and variance values for the financial variables of department
X in Quarter 2 of the year 2001.

Budget Actual Variance
wages110(2001.Q2, department X) 11,100 13,100 2,000
travel110(2001.Q2, department X) 3,100 3,700 600

advertising costs110(2001.Q2, department X) 3,000 23,100 20,100
other costs110(2001.Q2, department X) 800 3,100 2,300
total costs110(2001.Q2, department X) 18,000 43,000 25,000

3.2.2 Extra/Intra-organizational models

The industry average of companies operating within the same industry or branch

is often used as norm for the individual company in the area of competition bench-

marking or interfirm comparison (IFC). By comparing the financial variables of a

company with those of other companies, the company can assess its performance

against objective standards and see where the company is strong or weak.

With respect to IFC in financial models a distinction is made between two types

(Verkooijen 1993): (1) ratio models and (2) nominal value models. Ratio models

fully consists of ratios between financial measures, whereas nominal value models

consist of both ratios and pure nominal financial measures, such as inventory or

cash. The business model equation from a financial cube: total assets turnover(C)

= net sales(C)/total assets(C), is a typical example of measures in a ratio model.

In this example, a financial analyst can compare some company with its branch
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average, e.g. the cell total assets turnover(ABC-Company, 2008, Germany) might

be compared with the cell Branch AVG(total assets turnover(All-Companies, 2008,

Germany)). The branch averages are computed by taking the average value of the

business measures for a set of similar companies in the data set. Only ratio models are

suitable to diagnose the financial results of two different firms, because the firm’s size

effect is eliminated by the ratios, which makes the ratios of different firms comparable.

Normally, nominal value models can only be used when comparisons are made with

previous recorded data of the same firm.

Similarly, as with the application of planning and budget models in the OLAP

database, the information in the extra-organizational models must be on the base

cube level. In Chapter 6, Section 6.2, an extra-organizational model is applied for

interfirm comparison.

In addition, it is also possible to develop inter-organizational normative models.

In such models a comparison is made with internal reference objects within the same

company. The internal objects are based on the available dimensions of the database.

For example, we might compare the results of business A unit with business unit B or

we might compare the sales figures in different countries where the company is active,

and so on.

3.2.3 Historical models

Here the norm value for a particular variable in the OLAP cube is its value in one or

more previous time periods. Feelders (1993) notices that the number of previous time

periods considered in the comparison should not be too large, because of the possi-

bility of “structural changes”, such as a shift in the macro-economic circumstances

due to a financial crisis. Historical comparisons result in a judgement that the current

period did better or worse than the previous period. Obviously, it does not enable

one to say that “the judgement is good or bad in an absolute sense” (Feelders 1993).

For example, it might be that a company has a declining profitability compared to

last year, but that the branch on average is doing even worse.

There are many ways to construct historical reference objects in the OLAP data-

base, because the Time dimension is nearly always present in the OLAP cube. The

simplest way is manual pairwise comparison between two cells (Sarawagi 2001), where
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the analyst selects an actual cell - representing the actual period - and a reference cell

in the cube - representing the previous period - for comparison. In general, only the

cells on the same aggregation levels will be used in the comparison task for obvious

reasons, like the measurement scale of the variable. For example, the analysts could

compare the actual cell profita(2011.Q1, Germany, Golf Equipment), in a financial

cube from Example 2.1.1, with the profit of the first quarter in the previous year,

the reference cell profitr(2010.Q1, Germany, Golf Equipment), or with the profit in

the previous quarter, the reference cell profitr(2010.Q4, Germany, Golf Equipment).

Obviously, it is also possible to compare the actual period with the average of pre-

vious periods, e.g. the actual cell in the latter example could be evaluated against

AVG(profitr(Previous Years.Q1, Germany, Golf Equipment)). Besides more complex

historical reference object could be developed by time series models. How such mod-

els can be applied for regression analysis in OLAP databases is described by Chen

et al. (2002). The choice for the application of a certain historical model is made by

the analyst.

3.3 Statistical models

In multi-dimensional databases it is natural to use formal statistical models to auto-

mate, at least partly, exception detection. These models avoid subjective and error

prone manual exception detection approaches in large data cubes. An exceptional

value can also be defined as a large deviation of the expected value of the cell com-

puted by a statistical model. A simple statistical model is given by the average value

of cells in some context cube, computed over a single dimension Dq.

Definition 3.3. The average over the cells in D
iq
q , denoted by ȳi1...iq ...in(d1, . . . , ·,

. . . , dn), in context cube Di1
1 × . . .×D

iq
q × . . .×Din

n is defined as

ȳi1...iq ...in(d1, . . . , ·, . . . , dn) = 1

J

J∑
j=1

yi1...iq ...in(d1, . . . , aj, . . . , dn),

where J = |Diq
q |.

When a statistical model is used as a normative model, we usually write ŷ(c) for yr(c).

For convenience, we introduce a dot notation here: a dot (·) in place of a dimension
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means averaging over that dimension. Notice that if y is an additive cube measure,

the RHS of Definition 3.3 can be replaced by

1

J

J∑
j=1

yi1...iq ...in(d1, . . . , aj, . . . , dn) =
1

J
yi1...(iq+1)...in(d1, . . . , a, . . . , dn), (3.1)

where a ∈ D
iq+1
q is a parent of aj ∈ D

iq
q . This follows directly from Definition 2.20.

Moreover, Definition 3.3 can simply be generalized to multiple dimensions of the cell’s

context, to form a more sophisticated statistical model. For example, by computing

the average of the cell measure over multiple associated dimensions.

Example 3.3.1. Consider a cell value ya(d1, d2, d3) in a 3-dimensional base cube CB =

D0
1 ×D0

2 ×D0
3. We now construct a reference cell value ŷ000(d1, d2, d3) for the cell by

averaging measures values over all dimensions in the base cube, as follows

ŷ000(d1, d2, d3) = ȳ000(·, ·, ·) = 1

JKL

J∑
j=1

K∑
k=1

L∑
l=1

y000(aj, bk, cl). (3.2)

More complex statistical models, as we shall see in Sections 3.4 and 3.5, take into

consideration the position of the cell in the cube and the variation pattern over every

dimension. For example, in a 3-dimensional cube the overall effect over the cube and

the effects of rows, columns, and layers can be taken into account by more advanced

models.

Definition 3.4. The scaled residual is defined as the normalization of ∂y(c) by the

standard deviation σ of the cell

s(c) =
∂y(c)

σ
,

where ŷ(c) is computed with the statistical model applied to a certain context cube

C of the cell and σ2 is the variance in the same cube.

In statistical models it is assumed that the data cube is generated by some para-

metric distribution, for example, the Gaussian distribution. The parameters of the

distribution are estimated from the given cube data. In Sections in Sections 3.4 and

3.5, we discuss how to estimate the parameters, such as the standard deviation σ in

a cube C.
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3.3.1 Statistical hypothesis test

We can now formulate a statistical hypothesis test to identify exceptions in a cube C.

The null hypothesis (H0) for such a test states that the actual data instance ya(c)

has been generated from the estimated distribution. If the statistical test rejects H0,

ya(c) is declared to be an exception. A statistical hypothesis test is associated with

a test statistic, which can be used to obtain an exception score for ya(c).

Here we use a straightforward test statistic, where we assume that ya(c) has a

Gaussian distribution. All cells that are more than δ · σ distance away from the

distribution mean of all the cells in C are declared to be an exception. Typically,

we select δ = 1.645 (or 2.326) corresponding to a probability of 95% (or 99%) in the

standard normal distribution. In general, the appropriate δ is based on the domain

knowledge of the analyst, and therefore is user-defined. When this value is known,

the software, as described in Chapter 6, can automatically determine the exceptional

values in some cube based on a series of statistical tests.

Definition 3.5. For each cell residual, as specified in Definition 3.4, the following

statistical tests are defined⎧⎪⎨
⎪⎩

if ∂y(c)/σ > δ (one-tailed test) then the cell is labelled ∂y(c) = “high”;

if ∂y(c)/σ < −δ (one-tailed test) then the cell is labelled ∂y(c) = “low”;

if − δ ≤ ∂y(c)/σ ≤ δ (two-tailed test) then the cell is labelled ∂y(c) = “normal”.

Obviously, for the first two tests H0 is rejected and for the last test H0 is accepted.

3.3.2 General statistical model

Intuitively, an appropriate statistical model should capture the relation of a measure

with its related dimensions and dimension hierarchies. A variety of appropriate sta-

tistical models exists for exception identification in two-way tables, three-way tables,

four-way tables, etc., in the statistical literature; see, for example, Scheffé (1959) and

Hoaglin, Mosteller, and Tukey (1988). Statistical problem identification in this thesis

is mainly inspired by the work of Sarawagi et al. (1998) and the table analysis meth-

ods of Hoaglin et al. (1988) used in statistics. Later in this chapter we review three

statistical models for problem identification in multi-dimensional databases, namely:
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the multi-way ANOVA model for continuous data, the contingency model and log-

linear model for category data. Naturally, these models calculate the distance to the

reference value and the threshold in different ways.

Here we introduce the general statistical model without any concern for the type

of measure y, discrete or continuous.

Definition 3.6. For a cell value yi1i2...in(c) in the context cube C an expected cell

value ŷi1i2...in(c) is defined as

ŷi1i2...in(c) = f(C),

where f is some function defined in C.

The general statistical model for the cell is given by yi1i2...in(c) = f(C) + ε(c), where

ε(c) = ∂y(c). The function f in the general statistical model can have any of the

following functional forms:

• Additive: f returns the sum of its arguments. Models of this kind are called

linear models or multi-way ANOVA models and are usually associated with

continuous data. These models are appropriate for continuous measures (Defi-

nition 2.17), and are further discussed in Section 3.4;

• Multiplicative: f returns the product of its arguments. Models of this kind

are the multinomial and the log-linear model and are usually associated with

positive discrete data. These models are appropriate for discrete measures (Defi-

nition 2.17), and are further discussed in Section 3.5.

In the description of these models we postpone till Section 3.6 discussions regard-

ing data transformation to improve the model fit and the checking of assumptions as

constant variance, linearity and normality.

3.4 ANOVA models

The ANOVA model that can be used in OLAP databases with continuous measures,

is the multi-way ANOVA model with one observation per cell (Scheffé 1959; Hoaglin,
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Mosteller, and J. W. Tukey 1983). The dependent variable in the ANOVA model

corresponds with a continuous numeric measure yi1i2...in : C → R, where a single data

point is stored in the cube’s cells, and the independent variables in the ANOVA model

correspond with the cube’s categorical dimensions D1, D2, . . . , Dn. In this section we

explain the application of multi-way ANOVA models for exception identification.

3.4.1 Main-effects ANOVA models

The first step in ANOVA model construction is usual to start with the simple additive

ormain-effects model, where the function f in Definition 3.6 is assumed to be additive.

For the cube C, the expected value for a cell c, estimated with the simple additive

model takes the following form

yi1i2...in(c) = μ+ λ1(d1) + λ2(d2) + . . .+ λn(dn), (3.3)

where μ is the overall effect in the whole context, λ1(d1) is the main effect for di-

mension D1, λ2(d2) is the main effect for dimension D2, and so on. This model has

a simple interpretation because the separate contributions of the dimensions are just

added together. This is consistent because it is assumed that there are no interac-

tions between the dimensions in the context. Moreover, the usual assumption for this

model is
|Di1

1 |∑
d1

λ1(d1) =

|Di2
2 |∑
d2

λ2(d2) = . . . =

|Din
n |∑
dn

λn(dn) = 0. (3.4)

This assumption states that the means for the different dimension instances are

all equal. Additional assumptions for this model are the Gauss-Markov conditions

as: statistical independence, normality, and equality of cell variances, thus ε(c) ∼
N(0, σ2) (Scheffé 1959).

The coefficients of the model can be estimated by ordinary least-squares (OLS)

(Scheffé 1959). The sum of squares of the residuals (SSR) to be minimized by OLS

under the above assumptions is

SSR =

|Di1
1 |∑
d1

|Di2
2 |∑
d2

· · ·
|Din

n |∑
dn

(yi1i2...in(d1, d2, . . . , dn)− ŷi1i2...in(d1, d2, . . . , dn))
2. (3.5)
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The additive model that fits the data “best” is defined as one that determines esti-

mates for μ, λ1(d1), λ2(d2), . . ., λn(dn) so that the SSR is the smallest.

3.4.2 Full-effects ANOVA models

The simple additive model can be generalized to the full-effects ANOVA model, which

is a model that includes degrees of freedom for non-additivity. This model can describe

possible interaction between, for example, two dimensions D1 and D2 in the cube

D1×D2. The interaction term λ(d1, d2) is interpreted as that part of the main effect

not captured in the additive effects of λ1(d1) and λ2(d2). For example, you may enjoy

beer and nuts individually, but the combination is superior. In contrast, you may like

beer and ice cream but not together.

In general, the expected value for a cell c, estimated with the full-effects model is

yi1i2...in(c) = μ+
λ1(d1) + λ2(d2) + . . .+ λn(dn)+
λ12(d1, d2) + λ23(d2, d3) + . . .+ λ(n−1)n(dn−1, dn)+
λ123(d1, d2, d3) + λ234(d2, d3, d4) + . . .+ λ(n−2)(n−1)n(dn−2, dn−1, dn)+
. . .+ . . .+ . . .+ . . . ,

(3.6)

where μ is the overall effect in the whole context; λ1(d1), λ1(d2), . . ., λn(dn) are the

main effects for dimensionD1,D2, . . .,Dn; λ12(d1, d2), λ23(d2, d3), . . ., λ(n−1)n(dn−1, dn)

are the first-order effects for each pair of dimensions D1×D2, D2×D3, . . ., Dn−1×Dn;

λ123(d1, d2, d3), λ234(d2, d3, d4), . . ., λ(n−2)(n−1)n(dn−2, dn−1, dn) are the second-order ef-

fects for each triplet of dimensions D1×D2×Dn, D2×D3×D4, . . ., Dn−2×Dn−1×Dn;

and so on for higher-order effects. In this model it is assumed that

|Di1
1 |∑
d1

λ1(d1) =
|Di2

2 |∑
d2

λ2(d2) = . . . =
|Din

n |∑
dn

λn(dn) =

|Di1
1 |∑
d1

|Di2
2 |∑
d2

λ12(d1, d2) =
|Di2

2 |∑
d2

|Di3
3 |∑
d3

λ23(d2, d3) = . . . =
|Din−1|

n−1∑
dn−1

|Din
n |∑
dn

λ(n−1)n(dn−1, dn) =

= . . . = 0.

In addition, the Gauss-Markov conditions are also assumed to hold for the full-effects

model. For investigating non-additivity (interaction) in Equation (3.6), we apply
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a generalization of Tukey’s test of additivity Tukey (1949) to all first-order effects,

second-order effects, etc. For details on this test, we refer to Scheffé (1959).

The OLS estimates for all the model coefficients in Equation (3.3) and Equation

(3.6) are found by minimizing the SSR. The following mean-based estimates, gener-

alized from Hoaglin et al. (1983) and Scheffé (1959), yield the OLS estimates that

minimize the SSR. The estimate for the overall-effect is

μ̂ = ȳ(·, ·, . . . , ·). (3.7)

The estimates for the main-effects are

λ̂1(d1) = ȳ(d1, ·, . . . , ·)− μ̂,

λ̂2(d2) = ȳ(·, d2, ·, . . . , ·)− μ̂,
. . . ,

λ̂n(dn) = ȳ(·, . . . , ·, dn)− μ̂.

(3.8)

The estimates for the first-order effects are

λ̂12(d1, d2) = ȳ(d1, d2, ·, . . . , ·)− λ̂1(d1)− λ̂2(d2)− μ̂,

λ̂23(d2, d3) = ȳ(·, d2, d3, ·, . . . , ·)− λ̂2(d2)− λ̂3(d3)− μ̂,
. . . ,

λ̂(n−1)n(dn−1, dn) = ȳ(·, . . . , ·, dn−1, dn)− λ̂n−1(dn−1)− λ̂n(dn)− μ̂.

(3.9)

And so on for the estimation of the higher-order effects.

In Equation (3.7) μ̂ represents the overall mean in the whole cube C.

Moreover, when yi1i2...in(C) is a fully-additive measure (Definition 2.20), the es-

timates for the coefficients in Equations (3.7), (3.8), (3.9), and so on, are directly

available in the various cubes of the lattice L. Similarly, the mean-based estimates

are determined in L as follows (where j = k)

ȳ(·, ·, . . . , ·) = 1
|C| · y(CT )

ȳ(·, . . . , ·, dj, ·, . . . , ·) = 1
|R+1

Dj
(C)| · y(R−1Dj

(CT ))

ȳ(·, . . . , ·, dj, ·, . . . , ·, dk, ·, . . . , ·) = 1
|R+1

Dj
◦R+1

Dk
(C)| · y(R−1Dj

◦R−1Dk
(CT ))

. . . .

(3.10)

The mechanism behind these formulas can be understood by defining the concept

of a complement cube. The complement cube C = [j1, j2, . . . , jn] of a cube C =

[i1, i2, . . . , in] in the lattice L is defined as [j1, j2, . . . , jn] = [max1 − i1,max2 − i2, . . . ,
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maxn− in]. Every cube C has an unique complement cube C. In Equation (3.10), CT

is the complement of C = CB, R
−1
Dj
(CT ) is the complement of R+1

Dj
(C), R−1Dj

◦R−1Dk
(CT )

is the complement of R+1
Dj
◦ R+1

Dk
(C), and so forth. The general idea in Equation

(3.10) is that in the RHS of the equations the total of some complement cube y(C),

is divided by the cells of the cube |C|, to obtain the average value for some cell c′

ȳi1i2...in(c′) =
1

|C| · y(C),

where c′ is a cell with one or more averaged values.

3.4.3 Standard deviation, quality of fit, and significance of

effects

After fitting a multi-way ANOVA model and obtaining the cell residuals, we need

to scale them (Definition 3.4), where the standard deviation of each cell in the cube

is required for the computation. The general assumption in ANOVA models is the

assumption of equal variances within the cells in one-way or higher table layouts

(Scheffé 1959). Therefore, we assume that σ2(C) = σ2(c).

Suppose that s2(C) denotes the sample variance of a random sample from a cube

C with variance σ2. The sample variance for a cell in a cube C is a generalization of

Scheffé (1959), and is given by

s2(c) =

|Di1
1 |∑

d1=1

|Di2
2 |∑

d2=1

. . .
|Din

n |∑
dn=1

(y(d1, d2, . . . , dn)− ŷ(d1, d2, . . . , dn))
2

(|Di1
1 ||Di2

2 | · · · |Din
n | − 1)

. (3.11)

Then E(s2(C)) = σ2(C). In words, the variance s2(C) is estimated as the SSR divided

by approximately the number of cells, i.e. the degrees of freedom, in the cube.

A measure for the size of residuals is the SSR. The multi-way ANOVA model

uses the “fraction of the sum of squared variation explained by the fit” to judge the

quality of the fit of the ANOVA model. The fraction may be written as (Snedecor

and C.Cochran 1980)

R2 = 1− SSR∑
d1

∑
d2

· · ·∑
dn

(y(d1, d2, . . . , dn)− μ̂)2
. (3.12)
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This expression, using the estimated mean of the data μ̂ = ȳ(·, ·, . . . , ·), arises natu-
rally in a least-squares framework.

For both the main-effects and full-effects ANOVA model it has to be verified

whether the effects are significant and therefore should be included in the ANOVA

model or not. For each effect in the model we have to examine the matching hypoth-

esis from the list:
H0;Di

: There are no main effects for dimension Di,
i.e. λi(di) = 0 for all di;

H0;DiDj
: There are no first order effects between pairs of dimensions

Di ×Dj, i.e. λij(di, dj) = 0 for all di and dj;
H0;DiDjDk

: There are no second order effects between triplets of dimensions
Di ×Dj ×Dk, i.e. λijk(di, dj, dk) = 0 for all di, dj and dk;

H0;... : . . ..
For each null hypothesis that is rejected we accept the presence of the (main, first

order, second order, etc.) effect and include this effect in the ANOVA model. For

a cube C = [i1i2 . . . in], the total number of hypotheses that is tested is equal to

the number of cubes in its upset {↑ C}. For example, for a cube with 3 dimensions

without hierarchies, we can formulate 7 hypothesis, given by H0;D1 , H0;D2 , H0;D3 ,

H0;D1D2 , H0;D2D3 , H0;D1D3 , and H0;D1D2D3 . These hypothesis are tested with the

standard F-test. An F-test is a statistical test in which the test statistic has an

F-distribution under the null hypothesis. For H0;Di
the test statistic is given by

f =
s2b(Di)

s2w(ε)
=

SS(Di)
|Di|−1
SS(ε)

(|D1|−1)(|D2|−1)...(|Dn|−1)
, (3.13)

where s2b is the variance between dimensions, s2w the variance within dimensions,

SS(Di) is the sum of squares of dimension Di, and SS(ε) is the sum of squares of

the residuals. This test statistic is compared with the F-distribution with [(|Di| −
1), (|D1|− 1)(|D2|− 1) . . . (|Dn|− 1)] degrees of freedom at a certain significance level

α. The F-test is formulated by the equality Pr{f > Fdf;α} = α. The null hypothesis

is rejected at level α if f > Fdf;α. Notice that the test statistic needs to be adapted

for a null hypothesis with higher-order effects.
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3.4.4 Example

We investigate the measure revenues on the cube C = 1997.Month × Products, ob-

tained from the Foodmart data warehouse1, a realistic sales database from an Amer-

ican supermarket. In this example we scale the data, with the natural logarithms as

y(C) = log(revenues(C)). The data in {↑ C} for the measure y is created by summa-

rizing y(C), resulting in an additive measure (Definition 2.20). With Algorithm 1 we

identify exceptional values and compute yr(C) with the following additive ANOVA

models

1. ŷ00(Month, Products)= μ̂;

2. ŷ00(Month, Products)= μ̂+ λ̂1(Month);

3. ŷ00(Month, Products)= μ̂+ λ̂2(Products);

4. ŷ00(Month, Products)= μ̂+ λ̂1(Month) + λ̂2(Products).

In this example we refrain from testing the significance of effects with the F-test,

to show the outcomes of various ANOVA models, even from models that might omit

significant effects. This is done to examine the model’s effect on the sets of exceptional

cells that are identified. The estimates for an arbitrary cell y00(Month,Products) in

C obtained by model 4 is given by

μ̂ = ȳ00(·, ·),
λ̂1(Month) = ȳ01(Month, ·)− ȳ00(·, ·),
λ̂2(Products) = ȳ10(·,Products)− ȳ00(·, ·).

If the estimates are plugged into the model, we derive

ŷ00(Month,Products) = ȳ01(Month, ·) + y10(·,Products)− ȳ00(·, ·).

The various means in the above model can now be obtained by using Equation (3.10)

ȳ00(·, ·) = 1
|C| · y11(CT ),

ȳ01(Month, ·) = 1
|R+1

D1
(C)| · y01(R−1D1

(CT )),

ȳ10(·,Products) = 1
|R+1

D2
(C)| · y10(R−1D2

(CT )).

1Available from http://www.emielcaron.nl
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In exception identification we take δ = 1.645 (p = .95) as a threshold value. If we

apply the first and the third ANOVAmodel, no exceptional cells in the cube are found.

If we apply model 2, the following cells are labelled as high exceptions (November,

Drink), (December, Food), (December, Drink), and (December, Non-Consumable),

see Figure 3.1 a). And if we apply model 4, the exceptional cells with label high are

(May, Drink) and (August, Food) and the exceptional cell with label low is (August,

Drink), see Figure 3.1 b). For example in model 4, we have the following data for cell

c = (August, Drink): ya(c) = 8.218 = ln(3, 708), ŷ(c) = 8.266, and ∂y(c) = −0.048.
∂y(c) is scaled with σ(C) = 0.0225, computed with (12 · 3)− 1 = 35 d.f., to produce

the scaled residual ∂y(c)/0.0225 = −2.142. If we compare the scaled residual with

the threshold, −2.142 < −1.645, the cell c is labelled as a low exception.

In Figure 3.1 a), the revenues figures for products in the Month December are iden-

tified as exceptional high with model 2. This reference model only includes the overall

effect μ and the month-effect λ1(Month). The economic explanation behind the ex-

ceptions is given by additional revenues related to increased sales in the Christmas

period, which occur every year in December. If also the product-effect λ2(Product)

is included in the reference model, as in model 4, a different set of exceptional cells

in identified, as depicted in Figure 3.1 b). Here the month-effect is weakened and

the combined effects shows that the cells (May, Drink), (August, Food), and (Au-

gust, Drink) are remarkable. For example, the relatively low revenues in the cell

(August, Drink) might be explained by low temperatures in that month, resulting in

low revenues compared to other summer months and low revenues compared to other

product categories. We conclude that the choice for a particular statistical reference

model might result in different sets of exceptional values.

3.5 Contingency table models

The contingency table models that can be used in OLAP databases for measures with

discrete values, given by yi1i2...in : C → N, are the multinomial and the log-linear

models for multi-dimensional tables. These models were proposed by statisticians

to model contingency or frequency tables where the cell entries are positive discrete

values, i.e. count data. Detailed descriptions of these statistical models and their
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a) b)

Figure 3.1: Identification of exceptions in the example cube 1997.Month × Products
with ANOVA model ŷ(Month, Products)= μ + λ1(Month) (a) and model ŷ(Month,
Products)= μ + λ1(Month) + λ2(Products) (b). The color green indicates a high
exception and the color red a low exception in the figure.

analysis are given in, for example, in Bishop, Fienberg, and Holland (1975) and

Everitt (1994). In this section we generalize these contingency models for the common

two-way tables to multi-way tables, i.e. the n-dimensional cube C.

3.5.1 Multinomial models for contingency tables

The general form of the n-dimensional contingency table is a positive discrete mea-

sure, classified with respect to n qualitative variables (dimensions) Di1
1 , D

i2
2 , . . ., D

in
n ,

similar to a cube yi1i2...in : C → N. The count in the aj category of dimension d1, the

bk category of dimension variable d2, . . ., and the zq category of dimension variables

dn, that is the frequency in the (di11 , d
i2
2 , . . . , d

in
n )-th cell of the cube, is represented

by y(aj, bk, . . . , zq). The total number of observations in the ajth category of d1 is

denoted by y(aj,+, . . . ,+) and the total number of observations in the bkth category

of d2 is denoted by y(+, bk, . . . ,+), and so on. These are known as marginal totals.

N = y(+,+, . . . ,+) represents the overall total of cell values in the cube C.

Now suppose that each of the N cell values is classified independently in one

of the cells of the cube C, i.e. a multi-way table, and suppose that the probabil-

ity that an observation falls in the (d1, d2, . . . , dn)-th cell is p(d1, d2, . . . , dn). Let

Y (D1, D2, . . . , Dn) denote a random variable representing the number of cell values

in dimensions D1, D2, . . ., Dn of the cube, and let y(d1, d2, . . . , dn) denote the actual
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observed cell frequency. It is often assumed that the actual cell frequencies follow a

multinomial or Poisson distribution, with probability values p(d1, d2, . . . , dn), where
|D1|∑
d1

|D2|∑
d2

. . .
|Dn|∑
dn

p(d1, d2, . . . , dn) = 1, see for more detailed information Everitt (1994).

In general, the most important question in the analysis of contingency cubes

(tables) is whether the dimensions forming the cube are independent or not. From

the multiplication law of probability, independence between dimensions, implies that:

p(c) = p(d1,+, . . . ,+)p(+, d2, . . . ,+) · · · p(+,+, . . . , dn). Therefore, the hypothesis of

mutual independence of the dimensions D1, D2, . . . , Dn, where we assume that the

actual cell values y(d1, d2, . . . , dn) follow a multinomial distribution, is formulated as

H0 : p(c) = p(d1,+, . . . ,+)p(+, d2, . . . ,+) · · · p(+,+, . . . , dn), (3.14)

where p(c) represent the probability of a cell value being in the cell c of the cube C, and

p(d1,+, . . . ,+), p(+, d2, . . . ,+), . . ., p(+,+, . . . , dn), are the marginal probabilities of

dimension D1, D2, and so on. The question now is how to test the hypothesis and how

to estimate the probabilities. Therefore, estimates of the frequencies to be expected

when H0 is true have to be computed. In the case that Hypothesis (3.14) holds, the

expected value for an actual cell yi1i2...in(c) in the context cube C, is given by the

multinomial model

ŷi1i2...in(c) = Np̂(d1,+, . . . ,+)p̂(+, d2, . . . ,+) · · · p̂(+,+, . . . , dn), (3.15)

where p̂(d1,+, . . . ,+), p̂(+, d2, . . . ,+), . . ., p̂(+,+, . . . , dn) are estimates of the corre-

sponding probabilities. It can be shown that the best estimates are derived from the

marginal totals of the cube’s dimensions, namely

p̂(d1,+, . . . ,+) = y(d1,+,...,+)
N

,

p̂(+, d2, . . . ,+) = y(+,d2,...,+)
N

,
· · · ,

p̂(+,+, . . . , dn) =
y(+,+,...,dn)

N
.

(3.16)

Note that these are the maximum likelihood estimates (Bishop, Fienberg, and Holland

1975). In a cube C = [i1i2 . . . in] in L, the estimates of the marginal probabilities in
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Equation (3.16) are obtained by the following operations

N = y(R+1
D1
◦R+1

D2
◦ . . . ◦R+1

Dn
(C)),

y(d1,+, . . . ,+) = y(R+1
D2
◦R+1

D3
◦ . . . ◦R+1

Dn
(C)),

y(+, d2, . . . ,+) = y(R+1
D1
◦R+1

D3
◦ . . . ◦R+1

Dn
(C)),

· · · ,
y(+,+, . . . , dn) = y(R+1

D1
◦R+1

D2
◦ . . . ◦R+1

Dn−1
(C)).

(3.17)

3.5.2 Log-linear models for contingency tables

An alternative model for contingency table data is the log-linear model, where the

actual values are treated as realizations of independent Poisson random variables with

probability values p(c). Equation (3.15) specifies a multiplicative model for the data.

However, it is also possible to rearrange this model so that p(c) can be expressed as

the sum of the marginal probabilities. By taking the natural logarithms of Equation

(3.15), the model is rearranged to

log y(c) =
logN + log p(d1,+, . . . ,+) + log p(+, d2, . . . ,+) + · · ·+ log p(+,+, . . . , dn).

The model of complete independence can now be rewritten in a form equivalent

with the main-effects ANOVA model (Equation 3.3) (Bishop, Fienberg, and Holland

1975). Accordingly, the logarithm of the expected value for a cell ŷi1i2...in(c) in the

context cube C, estimated with the log-linear model under the assumption of mutual

independence, is given by

log yi1i2...in(c) = μ+
n∑

j=1

λj(dj), (3.18)

where μ is the overall-effect and the λj(dj)’s are the main-effects for each dimension

Dj. This model is known as the Poisson additive model or the main-effects log-linear

model. The main-effect parameters of this model are measured as deviations from the

dimension means of the log-frequencies from the overall mean, and it is assumed that

Equation (3.4) holds for all dimension means.

What is of interest, is to extend the main-effect log-linear model (Equation (3.18)),

to the common situation where the dimensions of the cube C cannot be assumed to be

(completely) independent. To do this, extra terms representing interactions between
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the dimensions are introduced into Equation (3.18), resulting in the complete log-

linear model (Bishop et al. 1975; Hoaglin et al. 1988; Everitt 1994). This model is

given by

yi1i2...in(c) = γ +
n∏

j=1

γ(dj)+
n∏

j �=k

γ(dj, dk)+
n∏

j �=k �=l

γ(dj, dk, dl)+ . . . , (3.19)

where γ is the overall-effect, the γ(dj)’s are the contributions from each individual di-

mension, the γ(dj, dk)’s are the interactions among two dimensions, the γ(dj, dk, dl)’s

are the interactions among three dimensions, and so on for the higher-order effects.

The multiplicative form can simply be transformed into a linear additive form by

taking the log of the original data values giving

l(c) = log y(c) =

log N +
n∑

j=1

log γj(dj) +
n∑

j �=k

log γjk(dj, dk) +
n∑

j �=k �=l

log γjkl(dj, dk, dl) + . . . =

μ+
n∑

j=1

λj(dj) +
n∑

j �=k

λjk(dj, dk) +
n∑

j �=k �=l

λjkl(dj, dk, dl) + . . . .

(3.20)

Estimates of the parameters in the log-linear models are obtained as a function

of the logarithm of ŷ(c) and the form of such estimates is very similar to those used

for the parameters in ANOVA models. Setting l(d1, d2, . . . , dn) = log y(d1, d2, . . . , dn)

and again adopting the ‘bar’ and ‘dot’ notation for means, that is

l̄(·, ·, . . . , ·) = 1

|D1||D2| · · · |Dn|
|D1|∑
d1

|D2|∑
d2

· · ·
|Dn|∑
dn

log y(d1, d2, . . . , dn), etc.

Then the following mean-based estimates, written in the form taken by parameter

estimates in multi-way ANOVA, yield the following estimates for the main-effects

log-linear model (Equation (3.18) and the complete log-linear model (Equation 3.20).

The estimate for the overall-effect is given by

μ̂ = l̄(·, ·, . . . , ·). (3.21)

The estimates for the main-effects are given by

λ̂1(d1) = l̄(d1, ·, . . . , ·)− μ̂,

λ̂2(d2) = l̄(·, d2, ·, . . . , ·)− μ̂,
. . . ,

λ̂n(dn) = l̄(·, . . . , ·, dn)− μ̂.

(3.22)
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The estimates for the first-order effects are given by

λ̂12(d1, d2) = l̄(d1, d2, ·, . . . , ·)− λ̂1(d1)− λ̂2(d2)− μ̂,

λ̂23(d2, d3) = l̄(·, d2, d3, ·, . . . , ·)− λ̂2(d2)− λ̂3(d3)− μ̂,
. . . ,

λ̂(n−1)n(dn−1, dn) = l̄(·, . . . , ·, dn−1, dn)− λ̂n−1(dn−1)− λ̂n(dn)− μ̂.

(3.23)

And so forth for the estimation of the higher-order effects.

Notice that due to the logarithmic form of Equation (3.18) and Equation (3.20)

the reference measure yr(C) is not fully-additive (Definition 2.20). For example,

log ȳ(·, ·, . . . , ·) = 1
|C| · log y(CT ). Therefore, we cannot use the computations as

formulated in Equation (3.10). In other words, in the estimation of the parameters of

the log-linear models, we cannot (re-)use the other cubes in L, for each cube C under

consideration we have to estimate the parameters in Equations (3.21), (3.22), and

(3.23) separately. Obviously, such computations are computationally more demanding

than the parameter estimations in multi-way ANOVA models.

Notice that the expected values corresponding to some deviant log-linear models

cannot be obtained directly from particular marginal totals of the actual cell val-

ues. This is so because in such cases the maximum likelihood equations have no

explicit solution. In these situations, the expected values are obtained alternatively,

for example, by the algorithmic method of iterative proportional fitting (Bishop et al.

1975).

For correct application of the multinomial model (Equation (3.15)) and the log-

linear models (Equations (3.18) and (3.20)), we need to test for independence between

sets of dimensions, i.e. we need to test the truth of Hypothesis (3.14). This test is

based upon comparing the actual cell values y(c) with the estimated cell values ŷ(c) in

some cube y(C), under a particular hypothesis of independence. Two well-known tests

are the Pearson X2 statistic and the likelihood ratio statistic X2
L; we refer to Everitt

(1994) for details on these test statistics. Both statistics follow approximately a chi-

square distribution when the hypothesis tested is true (Bishop et al. 1975). Testing

the hypothesis of independence is performed by comparing the calculated X2 with

the values in the chi-square distribution, with some significance level α, often some

low probability value of α = .05 or α = .01. Notice that the degrees of freedom the

test statistic, X2, depend upon on the number of instances of each dimension forming
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the cube. A straightforward way of determining the degrees of freedom of the X2

statistic for cell values in a multi-dimensional cube C is by the use of the formula

(Everitt 1994)

d.f. = (|C| − 1)− (|Di1
1 | − 1)− (|Di2

2 | − 1)− . . .− (|Din
n | − 1).

In general, these test statistics can also be used as goodness-of-fit criteria.

In the analysis of residuals in cubes with a discrete measure, it is often not ap-

propriate to scale the cell residuals with an estimate of the standard deviation as in

cubes with a continuous measure. Hence, for a cell c in a cube yi1i2...in(C) → N the

scaled residuals (Everitt 1994), adapted for multiple dimensions, can be used. The

use of scaled residuals for examination of a contingency table may often give conser-

vative indications of cells having lack of fit. A more precise analysis of the residuals is

proposed by Haberman (1973), by means of adjusted residuals. When the dimensions

forming the cube are independent, these adjusted residuals are approximately nor-

mally distributed with mean zero and standard deviation one. Moreover, in Sarawagi

et al. (1998) an alternative method for scaling the residuals is proposed.

3.6 Algorithm for statistical exception

identification

In this section a general algorithm for statistical exception identification in multi-

dimensional databases is presented. The algorithm can be adapted for both multi-

way ANOVA models to handle continuous measures, and contingency table models to

handle positive discrete measures. The input of the algorithm is a cube C = [i1i2 . . . in]

and its upset {↑ C} with measure values y(C) somewhere in the lattice L. The output

of the algorithm is a set of exceptions if any. The basic steps of the algorithm are

listed in Algorithm 2.

In the data transformation step (Step 1), the analyst might decide to transform

the measure values yi1i2...in(C), to create a common measurement scale if desired, by

some appropriate scaling operator SCALE(y(C)). Transformations of the measure

values might improve the fit of the statistical model and correct for violations of

model assumptions. Typically, the natural logarithms are taken of the cube’s cell
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Algorithm 2 Statistical exception identification algorithm

1. Data transformation;

2. Statistical modeling ;

3. Diagnostics ;

(a) Test for the significance of model effects;

(b) Test for the presence of interaction effects;

(c) Test for the normality of residuals;

(d) Test for the homogeneity of variance;

4. Exception identification.

values by log(y(C)). Obviously, in the application of the log-linear model (Equation

(3.18)), the measure values need to be scaled by taken the natural logarithm, by

definition. Next, the empty cells Nempty cells in the cube C are determined, and the

appropriate method to deal with the incomplete data cube is selected. Section 3.6.2

presents more details.

In the statistical modeling step (Step 2), we execute the first three steps of the

basic exception identification algorithm (Algorithm 1), where the normative model

is an advanced statistical model. If y is a continuous measure, R is selected to be

a multi-way ANOVA model in the form of a simple additive model. See Equation

(3.3), or a full-effects model, see Equation (3.6), to identify exceptional cells. The

coefficients of those models are estimated with Equations (3.7), (3.8), and (3.9), and

so on. Subsequently, the expected values ŷ(C) and cell residuals ∂y(C) are computed.

Finally, the variance σ2(C) is estimated with Equation (3.11), and the scaled residuals

s(C) are determined. Furthermore, if y is a counting measure, R is selected to be a

contingency table model in the form of a complete independency model, see Equation

(3.15), or a log-linear model, see Equation (3.20). The model coefficients for the

independency model are estimated with Equation (3.16), and the model coefficients

for the log-linear model with Equations (3.21), (3.22), and (3.23), and so on. Next

the expected values ŷ(C) and cell residuals ∂y(C) are computed. Finally, the cell
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residuals are standardized to obtain the scaled or adjusted residuals s(C) (Haberman

1973; Everitt 1994).

In the diagnostics step (Step 3), a series of statistical tests is performed automati-

cally or guided by the analyst, to determine the quality of the statistical model’s fit (a)

and to check the statistical model’s assumptions as independence (b), normality (c),

and homoscedasticity (d). Firstly, for multi-way ANOVA models we determine the

quality of the model with Equation (3.12) and we check whether the dimension effects

are significant or not, by using an F-test under the appropriate degrees of freedom

(see Equation 3.13). Secondly, the assumption of independence between the cube’s

dimensions is tested formally with Tukey’s non-additivity test (Hoaglin, Mosteller,

and J. W. Tukey 1983) and graphically by the analyst with interaction plots between

the dimensions. Thirdly, it is checked whether the residuals are distributed normally,

graphically by the analyst with Quantile-Quantile (Q-Q) plots and partly automated

with the Shapiro-Wilk normality test and/or the Kolmogorov-Smirnov test, where the

null hypothesis is that the residuals come from a normal distribution2. Fourthly, the

assumption of homoscedasticity is verified with Bartlett’s test and/or Fligner-Killeen

test of homogeneity of variance, where the null hypothesis is that the variances in

each dimension are the same.

Furthermore, for both the independency and log-linear model we test the hypoth-

esis of independence (Equation (3.14)) with the Pearson statistic. Notice that testing

the hypothesis of independence in the multinomial model is equivalent with testing

the goodness of fit of the Poisson additive model (Everitt 1994).

In the exception identification step (Step 4), the exceptional cells in C are labelled

as specified in Definition 3.5. In the software, the cells with high or low exceptions are

highlighted with colors, and presented to the analyst. Obviously, the number of ex-

ceptional classes can be increased in the software, if the analyst wants to discriminate

between more than 2 classes.

Notice that the analyst can return to a previous step in the method if desired.

For example, if in the diagnostic step (Step 3) it is shown that the selected model has

a poor fit, the analyst can decide to return to the statistical modeling step (Step 2).

2These formal tests are quite strict and sensitive to the presence of outliers, therefore from a
mild rejection of the null hypothesis we do not directly assume that the residuals are not normally
distributed.
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In summary, this algorithm is an iterative and interactive process, where the analyst

has to configure the parameters in the consecutive steps.

3.6.1 Algorithm for statistical model fitting

In this section we focus on the statistical modeling step (Step 2) of the algorithm.

Typically this algorithm is applied on a single cube C on some level i1i2 . . . in in the

lattice L. Therefore, only a single statistical model is fitted in Step 2. However,

an analyst usually explores multiple cubes in L to identify exceptions in a combined

analysis. For example, the analyst might create an analyse path P of increasingly

specialized cubes from top cube CT to base cube CB. For each cube on this path a

separate statistical model has to be fitted. Therefore, it is often beneficial, from a

computational viewpoint, to reuse computations from cubes in L that are analysed

by the analyst previously on the path. Here we review and describe an algorithm for

this purpose.

The general idea behind such an algorithm, is to fit a separate but similar statisti-

cal model for each cube C in the lattice L, in the form of an ANOVA model (Equation

(3.6)) or a log-linear model (Equation (3.20)), and to reuse intermediate modeling

results from earlier computations in later ones. Here a model-fitting algorithm is de-

scribed where a statistical model is fitted on the base cube CB of some (sub) lattice.

This method is inspired by the Up-Down algorithm from Sarawagi et al. (1998).

The algorithm is composed out of three main steps. In the first step (1) the

various means are computed, in the second step (2) the statistical model is fitted on

the cube C, and in the third step (3) the reference values ŷ(c) for all cells in C are

computed. The input of the algorithm is a cube C = [i1i2 . . . in] with measure values

ya(C) in the lattice L, and the output of the algorithm is yr(C) computed with an

advanced statistical model. The outline of the algorithm for statistical model fitting

is presented in Algorithm 3.

Remark 3.6.1. If y is a counting measure and hypothesis (3.14) holds, then R is

selected to be the multinomial model (Equation (3.15)). In that case Algorithm (3) is

simplified by skipping the first step and by modifying the second step. In the second

step we just have to compute the model coefficients with estimates based on Equation
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Algorithm 3 Algorithm for statistical model fitting

Initialization:
Consider the cube C on some level [i1i2 . . . in] in the lattice L;
Set C = CB = [00 . . . 0] in the sub lattice L′, where L′ = C + upset of C;
Computation:

1. Consider the cubes in the lattice L′

• For each cube in L′ cell means ȳi1...iq ...in(c) as defined in Equation (3.10)

2. For each cube in L′ starting from the top level to the base level do

• If R is a multi-way ANOVA model (Equation (3.6)) then compute the
model coefficients with estimates based on Equations (3.7), (3.8), (3.9),
etc.

• If R is a log-linear model (Equation (3.20)) then compute the model coef-
ficients with estimates based on Equations (3.21), (3.22), (3.23), etc.

3. Consider the cube C

• Add up all the model coefficients obtained in step (2) to obtain Equation
(3.6) or Equation (3.20)

• Compute ŷ(c) for all cells in C, to obtain yr(C)

(3.17). Subsequently, we proceed with the third step.

Remark 3.6.2. In comparison with the algorithm developed by Sarawagi et al. (1998),

Algorithm 3 can handle empty cells in the calculation of the coefficients of model (3.6)

or model (3.20).

In addition, Algorithm 3 can be extended for fitting a separate statistical model

for each cube C in the complete lattice simultaneously, as described in Sarawagi

et al. (1998). However, this task is, in general, computationally rather intensive,

because of the large number of possible cubes in L (Equation (2.5)). In the first

step of the extended method we apply the first step of the algorithm on the complete

lattice and form a minimum spanning graph for it. In the second step all the necessary

statistical model coefficients for all the cubes in L are computed. This step is the most

computational intensive, because the coefficients for each model have to be computed

and the computation of each coefficient involves the substraction of |L|−1 coefficients
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from higher level cubes. In the third step for each cube in L a statistical model is fitted

and the reference values are computed. In conclusion, we argue that the extended

algorithm for simultaneously fitting statistical models for all cubes in the lattice

has serious practical implementation problems, due to computational complexity.

Therefore, we have implemented Algorithm 3 without the extension in our software

for exception identification.

3.6.2 Dealing with empty cells

Empty cells are very common in OLAP cubes (Thomsen 1997). Sparsity in an OLAP

cube refers to the proportion of cube cells that are empty. Empty cells in the cube

obviously need to be taken into account when applying statistical models upon them

for exception identification. In general, there are three classes of methods for dealing

with incomplete data sets in statistical analysis (van Buuren et al. 1994):

• Discard records that have one or more missing values in the data set;

• Adapt the statistical analysis method;

• Impute (i.e. fill in) unknown entries by “reasonable” values.

A simple method for dealing with incomplete data is to discard records that have

missing values from the data set. This method is usually not applicable in OLAP

cubes, because empty cells are often the result of the multi-dimensional represen-

tation of the data, i.e. a complete fact table might result in incomplete cubes in

the lattice. Consequently, discarding records from the fact table would be equal to

deleting information from the cube. The other two methods might be used in an

OLAP cube. Next we review how the multi-way ANOVA and the log-linear model

are adapted when empty cells are present.

In general, our application of ANOVA models simply ignores missing values in the

calculation of the model coefficients, by computing the averages only over the values

that are actually present. When some cells in C are empty we simply ignore them,

and do not count them when computing the effects for the corresponding ANOVA

model coefficients, and adjust the formulas for it accordingly. Therefore, we determine

the number of empty cells Nempty cells for some cube C in the lattice, and adjust the
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denominator of Definition 3.3 by subtracting the Nempty cells from the total number

of cells |C| in the cube. For example, when computing ȳ(·, ·, ·) in Equation (3.2), we

divide by |C| −Nempty cells, where |C| = |D0
1| × |D0

2| × |D0
3|, to correct for empty cells.

Similarly, the analysis of incomplete contingency tables involves the use of log-

linear models from which parameters referring to cells containing structural zeros are

excluded since they are known a priori to be zero (Everitt 1994). Expected values

for such models may be obtained by using modifications of the iterative proportional

fitting algorithm of Deming and Stephan (1940). The computation of the correct

degrees of freedom for the test is, however, complicated by the presence of empty

cells. The formula for determining the degrees of freedom in a data cube with empty

cells is, equivalent with (Everitt 1994)

d.f. = |C| −Nmodel parameters −Nempty cells, (3.24)

where Nmodel parameters represents the number of parameters in the model that need

to be estimated. It is important to determine the correct number of parameters to

be estimated, since those referring to the empty cells are known a priori to be zero

and must therefore be excluded. Difficulties arise when fitting log-linear models to

contingency table data in the occurrence of zero cell entries. They arise because the

logarithm of zero is minus infinity. We solve this problem by adding a small positive

constant (e.g., 0.5 or so) to each cell in the base cube.

3.7 Related work

Outlier detection is an important problem within various research areas and applica-

tion domains; see Chandola, Banerjee, and Kumar (2009) for an overview. Obviously,

this topic is closely related to the topic of exception identification in OLAP databases.

Outlier detection refers to the problem of finding values in a data set that do not con-

form to expected behavior. These nonconforming values are referred to as outliers,

symptoms, exceptions, surprise values, discordant values, etc. Examples of appli-

cation areas are the detection of fraudulent credit cards or insurance claims, fault

detection in production systems, intrusion detection for cyber-security, finding sur-

prise values in management reports, and so on (Chandola et al. 2009). Researchers



Identification of exceptional values 79

have adopted techniques from diverse areas such as statistics, machine learning, data

mining, information theory, and have applied them to specific formulations of the

outlier detection problem. In this thesis we formulate the outlier detection problem

in statistical terms (Section 3.3).

In statistics, an outlier is often defined as a value that lies very far from the middle

of the statistical distribution of the variable under consideration in either direction

(Mendenhall et al. 1993). This definition is limited to continuous variables. In the

identification of of continuous outliers, the frequency of occurrence is also signicant.

This is stressed in a different definition: “An outlier is a single, or very low frequency,

occurrence of the value of a variable that is far away from the bulk of the values of the

variable (Barnett and Lewis 1994)”. Therefore, in detecting outliers in categoric data,

which are always part of OLAP data, the frequency of occurrence is an important

aspect. A general definition of an outlier in a set of continuous or categoric data is:

“an observation (or subset of observations) which appears to be inconsistent with the

remainder of that set of data (Barnett and Lewis 1994)”.

The phrase ‘appears to be inconsistent’ in the latter definition is crucial. Because

it is a matter of subjective judgement on the part of the observer (i.e., the OLAP

analyst) whether or not some observation (i.e., some cell in the cube) is picked out for

scrutiny. This judgement is also driven by different aims of the analyst in examining

outliers. In statistics, it is often the aim to detect and remove outliers in a data set due

to human error and ignorance. However, we define an outlier value in the sense that a

value is surprisingly high or low in relation to the others, and therefore interesting to

the analyst regardless of its cause. Notice that the actual cause of an outlier is often

not known to the data analyst. Sometimes, this is an erroneous value resulting from

a poor quality data set. In spite of this, we assume that an outlier expresses valid,

albeit “exceptional information” (Mendenhall et al. 1993), to the business analyst

working with an OLAP cube. The analyst would like to be informed about such

exceptional information, because this information might point him to some business

problem or opportunity. Based on this information the analyst can decide on further

analysis, to find the actual causes of the exception within the OLAP structures, and

determine the appropriate business action. Therefore, we do not use the term outlier

value but rather the term exceptional value or surprise value.
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In the literature numerous techniques are identified for outlier detection. See

Barnett and Lewis (1994) for a comprehensive overview. In this work, two classes

of outlier detection methods are distinguished: univariate methods, where analysis is

performed on an individual variable, and multivariate methods, which analyse more

than one variable at a time. Outlier detection methods for univariate data are of little

concern for outlier detection in OLAP databases because measures are multivariate

(Definition (2.17)). There are multiple methods for outlier detection in multivariate

data, usually dependent on the structure of the data (Barnett and Lewis 1994). For

example, the outlier may be a value in a regression analysis, a time series analy-

sis, unstructured multivariate data, etc. Besides, informal and formal methods are

developed for outlier detection in the statistical literature. In principle both informal

and formal methods can be used in OLAP databases.

Manual inspection of scatter plots is the most common informal analysis (Pyle

1999). Here data analysts have to use their own intuitition to decide on parameters

to single out outliers. Obviously, manual inspection of scatter plots for every variable

is time-consuming and therefore not applicable in large multi-dimensional databases,

containing millions of numeric and categoric values. In Barnett and Lewis (1994),

an informal, unsupervised method for identification of numeric outliers is explained.

This method is based on the construction of a boxplot, which represents data via

their quartiles. In the boxplot, most values are assumed to be in the interquartile

range (H) The authors label values lying outside the ±1.5H range as mild outliers

and values outside the boundaries of ±3H as extreme outliers. In Chen (1999) a

method is outlined to construct box plots for OLAP cube data. In some practices

like monitoring a manufacturing process, the 3σ rule is generally adopted. The 3σ

rule is: calculating the mean μ and the standard deviation σ, and if one observation

lies outside the (μ− 3σ, μ+3σ) range, we say it an outlier. Some researchers suggest

using the median and the MAD scale instead of the mean and the standard deviation

for detecting outliers (Hoaglin et al. 1983).

In the research on outliers detection, a number of formal statistical tests were

developed, called discordancy tests (Barnett and Lewis 1994; Hawkins 1994). In a

discordancy test, potential outliers are tested with the prospect of rejecting it from the

data set, or of identifying it as a feature of special interest. Specific discordancy tests
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are developed for specific statistical distributions (e.g., normal samples, exponential

samples, and Pareto samples) and data structures (e.g., regression, the linear model,

and designed experiments). For example, the notion of outlying variables in regression

analysis is related to the examination of residuals. For the simple linear model the

maximum absolute standardized residual is used to detect and test the discordancy

of a single outlier (Barnett and Lewis 1994). Basically, our method for exception

identification is a discordancy test for multi-dimensional data. Furthermore, our

method can be seen as a multivariate version of Grubb’s test (Grubbs 1969).

Finally, two related specific works on exception identification in OLAP databases

are mentioned. The first work applies a statistical model for exception identification

and the second a data mining model.

Important early research work on statistical exception identification is the work

by Sarawagi, Agrawal, and Megiddo (1998) in the i3Cube project3. In this project the

authors developed a discovery-driven exploration paradigm that explores the multi-

dimensional data for exceptions and summarizes the exceptions at appropriate ag-

gregation levels in advance, by applying a log-linear model. The discovery-driven

method is guided by pre-computed indicators of exceptions at various levels of detail

in the cube. By this method the analyst is guided by the model to interesting data

regions using pre-computed indicators. In Cariou et al. (2007), a similar approach is

taken. In this work the Chi-square contribution and test-value are used to discover

interesting cells. Our method for problem identification is quite similar, however our

approach is based on both the multi-way ANOVA model as the independency model,

dependent on the type of measure (continuous or discrete). In contrast, our algorithm

for exception identification (Section 3.6) pays specific attention to the diagnostics re-

lated to the statistical model, for example, to check the statistical model assumptions.

Diagnostics are nearly absent in Sarawagi et al. (1998).

In the literature, multiple data mining methods have been developed to discover

informative parts of the OLAP data cube. In Lin and Brown (2003) and Lin and

Brown (2006), an OLAP-outlier-based data association method is proposed. This

method integrates both outlier detection concepts in data mining and ideas from the

OLAP field. An outlier score function is defined on OLAP cube cells which measures

3http://www.cse.iitb.ac.in/∼sunita/icube/index.htm
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the extremeness of the cell. They associate the data points in the cell when the cell

is unusual. Their method is applied to the problem of associating criminal incidents.

Result shows that this combination of OLAP and data mining provides a promising

solution to the problem. Furthermore in Usman et al. (2013b), a method is presented

to discover association rules in OLAP databases. This method supports the singling

out of “informative dimension and fact variables”. And in Usman et al. (2013a), data

mining methods based on principal component analysis combined with agglomerative

hierarchical clustering are applied on multi-dimensional data sets to “discover cubes

of interest”. Similar to these works, we also focus on OLAP cube cells in outlier

detection. However, we do not apply a data mining model for this purpose but

various classical statistical models.

3.8 Conclusion

In this chapter, we extended the functionality of the multi-dimensional database with

exception identification. Exceptional cell values are determined based on a normative

model R. We discussed two broad classes of normative models for OLAP databases:

managerial models and statistical models, and we discussed how they can be used in

an OLAP cube. In the case of normative models we differentiate between planning

and budget models, historical models, and extra-organizational models. In the case of

statistical normative models we distinguish between simple and advanced statistical

models. Important advanced statistical models are the multi-way ANOVA model for

continuous measures and independency models for discrete measures. For statistical

models we developed a hypothesis test to identify exceptional values in a cube C.

Moreover, we showed how the estimates for statistical models can be determined by

operations on the aggregation lattice. Finally, we provided an algorithm for statistical

exception identification and presented an algorithm for statistical model fitting. In

Chapter 6 this algorithm is applied and illustrated in a number of practical business

case studies.
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Explanation of exceptional values∗

4.1 Introduction

In this chapter, we describe a method to automatically generate causal explanations

of exceptional cell values. In the multi-dimensional database the actual model in the

general diagnosis task (Chapter 1) is determined by a system of drill-down equations

and a system of business model equations (Chapter 2). The OLAP analyst deter-

mines the object of a diagnostic task by selecting an exceptional cell (Chapter 3).

The normative model is determined by a reference class R used for exceptional cell

identification. The reference class specifies the reference objects in the explanation

formalism. Consider a lattice L of OLAP cubes, a cube C = [i1i2 . . . in], and an

exceptional cell value ∂y(c) = q with c ∈ C. We can explain the exceptional values

by:

1. purely business equations from the model M related to the measure y, or

2. purely drill-down equations from the exceptional cell’s downset {↓ c}, where
c ∈ C, or

3. combinations of drill-down and business equations.

The remainder of this chapter is organised as follows. In Section 4.2, we review

the most important concepts of the explanation methodology for automated business

∗This chapter is mainly based on two articles by Caron and Daniels (2007) and Daniels and
Caron (2009).
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diagnosis as developed by Feelders (1993) and Feelders and Daniels (2001). Here

explanation is discussed in the context of business model M and based on a generic

explanation formalism. In addition, we deal with the appropriate conditions under

which the explanation formalism produces valid explanations. In Sections 4.3, 4.4,

and 4.5 we apply the explanation formalism to explain an exceptional cell value

in a multi-dimensional OLAP database. In Section 4.3, we extend the explanation

method with a procedure to deal with cancelling-out effects in data sets. This is a

common phenomenon in financial and other data sets. This procedure is implemented

in a look-ahead algorithm. In Section 4.4, we discuss explanation in systems of

purely drill-down equations. In Subsection 4.4.1, we describe a general top-down

explanation method for these type of systems. In Subsection 4.4.2, we particularly

focus on systems of additive equations that exhibit the property of transitivity. We

use this property to construct a greedy algorithm for explanation. In Section 4.5, we

discuss explanation in hybrid systems of equations, i.e. in systems with both OLAP

drill-down and business model equations. For this purpose, we propose a general

algorithm for explanation. In Section 4.6, we develop filter methods to reduce the

number of explanations that are generated by the algorithms for explanation. In this

way explanation trees can be pruned to a manageable size. In Section 4.7, we discuss

how to construct consistent chains of reference objects for various types of normative

models applicable in the OLAP context. In Section 4.8, we discuss related work on

computerized diagnosis in the field of business and management. In Section 4.9, we

draw some conclusions.

4.2 Overview of theory on explanation∗

4.2.1 Explanation formalism

The explanation formalism applied to multi-dimensional databases is largely based

on Feelders and Daniels’ method for explanations, which in turn is essentially based

on Humphreys’ notion of aleatory explanations (Humphreys 1989) and the theory of

explaining differences by Hesslow (1983). Causal influences can appear in two forms:

∗ With the exception of subsection 4.2.4, this section gives an overview of the work presented in
(Feelders and Daniels 2001; Heckman 2000; Feelders 1993; Kosy and Wise 1984).
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contributing and counteracting. The canonical formalism for causal explanations is

given by

〈a, F, r〉 because Cb, despite Ca, (4.1)

where 〈a, F, r〉 is the event to be explained, Cb is a non-empty set of contributing

causes, and Ca a set of counteracting causes, which can be empty. The explanation

itself consists of the causes to which Cb refers. Ca is not part of the explanation, but

gives a clearer notion of how the members of Cb actually brought about the symptom.

In words, the explanandum is a three-place relation between object a that shows

the actual behaviour, a property F, that shows the deviation for a particular variable

from its norm value, and a reference object r, obtained from the normative class R.

In the OLAP context, for example, the actual object a might be the cell c =(2010,

Germany, beer) from the cube C = {2010} × Country × Product, and the reference

object r might be the cell c′ =(2009, Germany, beer) from the cube C = {2009} ×
Country × Product. The property F is that the measure profit in the year 2010 for

the cell c is relatively low compared to profit in the previous 2009 for the cell c′. The

task now is not to explain why a has property F, but rather to explain why a has

property F when the other members of r do not. For example, when r is selected as

the statistically normal case, the explanatory cause must be abnormal.

If ∂y(c) = q is identified as an exceptional cell value, by the methodology as

discussed in Chapter 3, we can subsequently try to explain the difference ∂y(c) =

ya(c)− yr(c) based on the internal structures of the multi-dimensional database, that

are described in Chapter 2. By using (4.1) the event to be explained can be rewritten

as

〈ya(c), ∂y(c) = q, yr(c)〉 because Cb, despite Ca. (4.2)

In this expression it can be the case that yr(c) = ŷ(c), where ŷ(c) is computed by

a statistical normative model described in Chapter 3 and ŷ(c) is associated with the

same cell c as the actual value. Besides it can be the case that yr(c) = y(c′), where

y(c′) is computed by a managerial normative model described in Chapter 3 and y(c′)

is associated with a different cell c′ in comparison with the actual cell c.
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4.2.2 Causality

Explanations generated with the explanation formalism based on (4.1) are based on

general laws expressing relations between events: such as cause-effect relations or

constraints between variables. In a multi-dimensional database, these general laws

are represented in two internal structures: the system of drill-down equations (see

Equation (2.11)) and the system of business model equations M . The system of drill-

down equations can be represented in a semilattice SL and the system of business

equations can be represented in a business model graph G(M) (Section 2.3.2). The

vertices in both graphs, which represent variables in the drill-down equations and

variables in the business model, indicate the direction of influence, or causal direction.

Interpreting the = in both systems of equations as a ←, the causal direction is given

as used by economists, accountants or financial analysts. Thus, in both systems of

equations the effects appear on the left-hand side (LHS) of the equations and the

causes on the right-hand side (RHS). The direction of explanation is the opposite

of the causal direction. In other words, the explanation generation process proceeds

from the whole, the LHS variables, to the parts, the RHS variables.

Generally speaking, there is not a single notion of causality in economics and

business. In principle one would say that the cause precedes the effect in time. For

example, rain is the cause of a wet street or after an increase in the price of a product

demand will decrease (c.p.). Even this simple notion might be tricky, for example, a

child may think that closure of a railway crossing barrier will cause a train to arrive.

Another example where correlation between the data does not imply a causal relation

was found in a database with data on traffic accidents (Feelders et al. 2000). This

notion of causality has been discussed extensively in de Kleer and Brown (1986),

de Kleer et al. (1992), and Reiter (1987).

Other less intuitive notions of causality are also known in economics. For example,

X causes Y if information on X leads to better prediction of Y . This definition from

econometrics is due to Granger (2001). It is also well known that economists use

the implicit intuitive notion of causality to reason about static economic models

(Berndsen and Daniels 1990). In these cases it is assumed that some effects happen

instantaneously, like the clearing of the market, whereas in reality there is a small

time lag between cause and effect. However static models are often preferred because
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they are much simpler and provide a comprehensive framework to answer questions

in comparative statics (Samuelson 1941). Nevertheless this type of “cause-effect”

reasoning can be confusing for novices.

In multi-dimensional databases the direction of causality is obvious, because the

reasoning is always from the whole, e.g. a parent cell, to the constituent parts, e.g.

the parent’s child cells. In general, causes with greater influence are considered more

important by the analysts. Of course the measure of influence has to be chosen in

correspondence with the notion of significance of the analyst.

4.2.3 Measure of influence

Suppose y = f(x) is an equation of the business model M , then we define a measure

of influence as follows

inf(xi, y) = f(xr
−i, x

a
i )− yr, (4.3)

where f(xr
−i, x

a
i ) denotes the value of f(x) with all variables evaluated at their refer-

ence values, except the measure xi. In words, inf(xi, y) indicates what the difference

between the actual and reference value of y would have been if only xi would have

deviated from its reference value. The inf-measure represents a form of ceteris paribus

reasoning where the xi’s play the role of causes that produced y. For computational

purposes we store for each equation in the business model a change in the actual,

reference, and influence measure values in an influence table; see Table 4.2 for an

example.

The inf-measure enables the operationalisation of the concepts of contributing

and counteracting causes in expression (4.2). The set of contributing (counteracting)

causes Cb (Ca) consists of variables xi with

inf(xi, y)× ∂y > 0 (< 0). (4.4)

In words, the contributing causes are those variables whose influence values have the

same sign as ∂y, and the counteracting causes are those variables whose influence

values have the opposite sign.

Insignificant influences are left out in the explanation by means of a reduction

measure or method (RM). Other reduction methods are described in detail in Section
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4.6. RM1 reduces the set of causes reduced to the so-called parsimonious or significant

set of causes. The parsimonious set of contributing causes Cbp is defined as the

smallest subset of the set of contributing causes Cb, such that its influence on y

exceeds a particular fraction T+ of the influence of the complete set, i.e.

inf(Cbp, y)

inf(Cb, y)
≥ T+. (4.5)

The definition regarding parsimonious counteracting causes, Cap, is similar. The

fractions T+ and T− are numbers between 0 and 1 and are determined empirically

by the analyst.

4.2.4 Consistency and Conjunctiveness

A correct interpretation of the influence measure, i.e. the generation of valid expla-

nations for a symptom, is only possible if and only if the following two constraints

are fulfilled:

1. the actual and reference values satisfy the consistency constraint (Definition 4.1

below), and

2. the function f satisfies the conjunctiveness constraint (Definition 4.2 below).

Definition 4.1. The consistency constraint states that the reference values must

satisfy the same functional requirements as the actual values, i.e. ya = f(xa) and

yr = f(xr), where the reference objects are obtained by a normative model R.

This is not always the case, because in some situations, yr = f(xr) due to the form

of the function f or the type of normative model R applied. If this is the case,

the explanation procedure described in this section is questionable, because then

∂y = ya − yr =
n∑

i=1

inf(xi, y).

Example 4.2.1. A straightforward example of a violation of the consistency constraint

is given in Table 4.1. In this table we observe the actual values of business variables

in the equation y = x1 × x2 for two different firms. The column average (Avg) is the

reference value. From the last column in this table we infer that yr = xr
1 × xr

2, where

yr = 1
2
(ya(Firm 1) + ya(Firm 2)). Here taking reference vales and applying f do not

commute: yr = Avg(ya) = f(Avg(xa)).



Explanation of exceptional values 89

Table 4.1: Actual and norm values for y = x1 × x2.

Variables Firms
1 2 Avg

y 8 10 9
x1 2 5 3.5
x2 4 2 3

In Section 4.7, we explain in detail under what conditions the reference values

satisfy the functional equations of OLAP or business model equations. Furthermore,

we describe for managerial and statistical normative models, that are applicable in

the OLAP context, how to construct a consistent chain of reference values.

Definition 4.2. A model equation satisfies the conjunctiveness constraint if for all

subsets X ⊆ {x1, . . . , xn}\{xi} the following holds

inf(xi, y) ≥ 0 ⇒ inf(X ∪ {xi} , y) ≥ inf(X, y),

inf(xi, y) ≤ 0 ⇒ inf(X ∪ {xi} , y) ≤ inf(X, y).

This constraint captures the intuitive notion that the influence of a single variable xi

should not turn around when it is considered in conjunction with the influence of a

number of other variables. Only under this condition can significant causes be joined

together as a total set (Section 4.6, Equation 4.5).

Two large classes of functions satisfy the conjunctiveness constraint, namely addi-

tive and monotonic functions (Feelders and Daniels 2001). By monotonicity we mean

monotonicity in all variables separately, on the domain under consideration. Rela-

tions in financial models are almost always monotone. Additivity and monotonicity

can also be easily checked in the business model. For example, the financial model

presented in Chapter 1, Table 1.1 consists of 2 additive relations and 3 monotonic

relations.

If f satisfies the consistency constraint and the conjunctiveness constraint then

the following holds (assuming ya > yr):

• f(x1, x2, . . . , xn) increases if xi ∈ Cb is changed from xr
i to xa

i , and

• f(x1, x2, . . . , xn) decreases if xi ∈ Ca is changed from xr
i to xa

i .
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Consequently, yr = f(xr
1, x

r
2, . . . , x

r
n) gradually changes to ya = f(xa

1, x
a
2, . . . , x

a
n) by

replacing the reference values to the actual values of xi. Notice that for the remainder

of this thesis it is assumed that the consistency and conjunctiveness constraints are

satisfied.

4.2.5 Interpretation of the influence measure

The interpretation of the inf-measure (expression 4.3) is dependent on the functional

form of the function f . For additive measures that are common in OLAP, we show

that ∂y = ya − yr =
n∑

i=1

inf(xi, y).

Theorem 4.2.1. If f is an additive function such that ya =
n∑

k=1

sk(x
a
k), where the

sk, k = 1, . . . , n, are arbitrary functions, and yr =
n∑

k=1

sk(x
r
k) then ∂y = ya − yr =

n∑
i=1

inf(xi, y).

Proof.

ya − yr =
n∑

k=1

sk(x
a
k)−

n∑
k=1

sk(x
r
k)

inf(xi, y) =
n∑

k �=i

sk(x
r
k) + si(x

a
i )− yr = si(x

a
i )− si(x

r
i )

and therefore:
n∑

i=1

inf(xi, y) = ya − yr .�

(4.6)

Correspondingly, in the situation that the function f is the average, the inf-

measure is given by inf(xi, y) = (xa
i − xr

i )/n, where n is the number of RHS elements

in the function. In this case ∂y =
n∑

i=1

inf(xi, y) =
n∑

i=1

(xa
i − xa

i )/n and Theorem 4.2.1

applies.

Moreover, in the case that the function f is differentiable, and holds for both the

set of actual values as for the set of reference values, then inf(xi, y) is also correctly

interpreted as a quantitative specification of the change in y that is explained by a

relatively small change in xi.

Lemma 4.2.2. If f is possibly non-additive but differentiable, yr = f(xr) and δi =

xa
i − xr

i is small then ∂y ≈∑n
i=1 inf(xi, y).
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Proof. This follows immediately from the Taylor series expansion of f around xr
i .�

Remark 4.2.1. Notice that in general ∂y is not necessarily equal to
n∑

i=1

inf(xi, y), even

in the case when f has an additive form, but when yr = f(xr). In such cases, the

influence measure is difficult to interpret as shown in the example in Table 4.1. For

firm 1 in this table we infer that −1 = ∂y = inf(x1, y) + inf(x2, y) = 2. In this

example we can interpret the sign of the inf-measure but not its value.

4.2.6 Maximal explanation

So far, we have discussed “one-level” explanations, explanations based on a single

equation from the business model M . For diagnostic purposes, however, it is mean-

ingful to continue an explanation of ∂y = q, by explaining the quantitative differences

between the actual and norm values of its contributing causes in the business model.

Causes can be chained together, from one level to the next in the business model,

until a maximal explanation is obtained, (Feelders 1993; Feelders and Daniels 2001).

The idea behind the method of maximal explanation is to construct an explanation

tree or tree of causes T with ∂y = q on level M0 as the root, the children of the root

are contributing causes on level M1, the grandchildren of the root are contributing

causes on level M2, and so forth, until the contributing causes on level Md. Usually

we only add parsimonious causes (see RM1) to the tree.

In Figure 2.7 on page 45 in Section 2.3.2, a multi-level business model with mea-

sures from a financial database is depicted. In the tree the counteracting causes are

not explained any further, because they are not seen as part of the explanation it-

self. The explanation process is continued until a contributing cause is encountered

that cannot be explained within the business model M . In the explanation tree, T p

denotes the level p in T , where p = 0, 1, . . . , d and T 0 = ∂y = q is the root of tree.

4.3 Cancelling-out effects and look-ahead

explanation

A shortcoming of the method of maximal explanation is that it cannot deal with

cancelling-out or neutralisation effects. Cancelling-out is the phenomenon that the
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effects of two or more lower-level variables in the business model M cancel each other

out, so that their joint influence on a higher-level variable in the business model is

partly or fully neutralized. For example, the first half-year positive financial results

could partially cancel out the negative financial results of the second half-year in a

financial model. This cancelling-out pattern would not be visible on the aggregated

year level in the model. These hidden causes are quite common in business data.

Hidden causes are significant causes that are not visible in the explanation tree,

because they are cancelled-out by other variables. The problems with these patterns

were first mentioned by Kosy and Wise (1984), however no solution was presented in

their article. In this section, we present a look-ahead explanation method that deals

with the presence of cancelling-out effects.

4.3.1 Making hidden causes visible by substitution

In theory, cancelling-out effects may occur at every level in the business model. Of

course, business and financial analysts would like to be informed about these hidden

causes, and would consider an explanation tree without mentioning these causes as

incomplete. We develope a method that can identify hidden causes if present.

Suppose that we are explaining a symptom ∂y = q and the following equations

from the business model M

y = f(x) ∈Mp;(p+1), (4.7)

xi = gi(z) ∈M (p+1);(p+2), (4.8)

where x = (x1, . . . , xi, . . . , xn) and z = (z1, . . . , zm) denote n and m-component vec-

tors. In the above equations, Mp;(p+i) represents a subset of equations from the

business model M . In this notation the variables on level p appear on the left hand

side of the business model equations on level Mp. These are expressed in terms of the

variables on a higher level (p+ i), that appear on the right hand side of the business

model equations on level M (p+i). For variables that cannot be expressed in variables

at level (p+ i), i.e. leaf nodes in M on intermediate levels, we use variables at a lower

level closest to the level (p+ i).

Now suppose that explanation generation with Equation (4.7) on level Mp;(p+1)

results in sets of parsimonious causes where variable xi does not belong to, thus
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xi /∈ Cbp(y) or xi /∈ Cap(y). In words, the variable xi is not significant because it has

a marginal influence on the root y. An extreme situation occurs when inf(xi, y) = 0,

then the variable xi has no influence on ∂y. To make sure that the explanation is

complete, all successors of xi have to be investigated for possible cancelling-out effects.

Therefore, all children of xi, i.e. the elements of z in the RHS of Equation (4.8), are

substituted into the RHS of Equation (4.7) to derive the new equation

y = hi(x, z) ∈Mp;(p+2). (4.9)

Mp;(p+2), the result of substituting jointly all equations on level M (p+1);(p+2) into the

parent equation(s) on level Mp;(p+1), is added to the business model. Now Equation

(4.9) is used for explaining the symptom ∂y = q and we obtain causes at level p+ 2,

possibly not captured by straightforward application of maximal explanation. This

procedure is called one-step look-ahead.

Example 4.3.1. Here we consider the business modelM composed out of the equations

y = f(x1, x2) ∈ M0;1 and x2 = g(z1, z2) ∈ M1;2. G(M), the graph of M , is depicted

in Figure 4.1 on the left-hand side. In this example we apply the one-step look-ahead

method on the equations. We substitute equation M1;2 into equation M0;1 to derive

the equation y = f(x1, g(z1, z2)) = h(x1, z1, z2) ∈ M0;2. On the right-hand side of

Figure 4.1, this equation is depicted as the explanatory graph G(M0;2). Notice that

in Section 6.2 an extensive example is given.

Figure 4.1: Explanatory graphs for G(M) (left) and for one-step look-ahead G(M0;2)
(right).



94 Cancelling-out effects and look-ahead explanation

We now define contributing and counteracting hidden causes and their influence

on a symptom ∂y.

Definition 4.3. Variable zj of Equation (4.9) is a contributing hidden cause when

zj ∈ Cbp(y) and xi /∈ Cbp(y), where zj is a successor of xi.

Definition 4.4. Variable zj of Equation (4.9) is a counteracting hidden cause when

zj ∈ Cap(y) and xi /∈ Cap(y), where zj is a successor of xi.

Here the influence of zj on y is given by:

inf(zj, y) = f(xr
−i, gi(z

r
−j, z

a
j ))− f(xr

−i, gi(z
r)), (4.10)

and the influence of xi on y is given by:

inf(xi, y) = f(xr
−i, x

a
i )− f(xr) = f(xr

−i, gi(z
a))− f(xr

−i, gi(z
r)). (4.11)

This means that the effect of zj is neutralized by the effects of other variables in the

vector z. It is assumed that the function hi satisfies the conjunctiveness constraint.

In the special case that the functions f and gi from Equations (4.7) and (4.8) are both

additive we have inf(xi, y) =
∑m

j=1 inf(zj, y) (see Theorem 4.2.1). From this relation

it immediately follows that when xi /∈ Cbp(y) (or xi /∈ Cap(y)) and zj ∈ Cbp(y), at

least one variable zj is in the set of counteracting causes Ca(y). Or vice versa, when

xi /∈ Cbp(y) (or xi /∈ Cap(y)) and zj ∈ Cap(y), at least one variable zj is in the set of

contributing causes Cb(y).

4.3.2 Algorithm for look-ahead explanation

The one-step look-ahead method can simply be extended to multi-step look-ahead to

visualize hidden causes at deeper levels in M , in the following way. Two-step look-

ahead is defined as explanation in Mp;(p+3), the result of substituting all equations

at level M (p+2);(p+3) into Mp;(p+2), and so on for Mp;(p+4), Mp;(p+5), . . ., Mp;(p+d). In

general, for a business model M with depth d, the maximal number of look-ahead

steps is d − 1. In the multi-step look-ahead method, we generalize Definitions 4.3

and 4.4 to other levels in M as follows: a successor of variable xi on level (p + i) is
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a hidden cause if its influence on y is significant after i − 1 substitutions, when the

influence of variable xi of Equation (4.7) on y is not significant.

Here a look-ahead algorithm is proposed which is composed out of two consecutive

phases: an analysis (1) and a reporting (2) phase. In the analysis phase the explana-

tion generation process starts for a symptom ∂y, similar as for maximal explanation,

with the root equation in the business model by determining parsimonious causes

(RM1). However, instead of proceeding with strictly parsimonious causes, all non-

parsimonious causes are investigated for possible cancelling-out effects at a specific

level in M . In this phase, hidden causes are made visible by means of substituting

equations. The derived equations are added to M and considered for explanation gen-

eration. In the reporting phase the explanation tree is updated when hidden causes

are identified. In updating the tree new parsimonious causes are added and causes

that have become non-parsimonious are removed. In Algorithm 4, the pseudo code

of the algorithm is presented, where q is the number of selected look-ahead steps.

Example 4.3.2. In Section 6.2, the working of the algorithm for look-ahead explanation

is shown in a case study on interfirm comparison at Statistics Netherlands (2009).

Remark 4.3.1. When Algorithm 4 is executed with q = 0 (i.e. no look-aheads) the

algorithm reduces to maximal explanation, as discussed in Section 4.2.6.

4.4 Explanation in a system of drill-down

equations

If an exceptional cell value ∂y(c) is identified in a cube C, the next step is to explain

this exception within the internal structures of the OLAP database, i.e. the system

of drill-down equations and/or the system of business model equations. To do this

we propose:

1. explanation methods for systems of purely drill-down equations:

(a) a top-down explanation method (Section 4.4.1);

(b) a greedy explanation method (Section 4.4.2), if only certain types of drill-

down equations apply;
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Algorithm 4 Multi-level explanation algorithm with look-ahead

Initialization:
∂y = q: a symptom;
M : a business model, where d is the number of levels in M ;
RM1: with pre-determined values for T+ and T−;
q: the number of look-ahead steps, where 0 ≤ q < d;

Computation:
p := 0;
y is the root node of the explanation tree T 0;
repeat {Maximal explanation}

if a node corresponds to a parsimonious contributing cause then
determine parsimonious causes Cbp(y) and Cap(y) for equation(s) M

p;(p+1);
add parsimonious causes to T p+1 as child nodes;
p := p+ 1;

end if
until a node corresponds to a variable that cannot be explained on Mp;(p+1) or p := (d− 1);
if q > 0 then

for k = 0 to d− 1 do {Analysis phase}
for p = 1 to q do

substitute jointly all equations on M (p+k);(p+k+1) into equation M (k);(p+k);
add new equations M (k);(p+k+1) to M ;
determine parsimonious causes Cbp(y) and Cap(y) for equation M (k);(p+k+1);
if causes on level Mp+k+1 are parsimonious then {Reporting phase}

add parsimonious causes to T p+k+1 as successor nodes;
remove causes from T p+k+1 that have become non-parsimonious;

end if
end for

end for
end if
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2. and an explanation method for hybrid systems of equations (Section 4.5), com-

posed out of both drill-down and business model equations.

4.4.1 Top-down explanation

In this section, we apply the method of maximal explanation (Section 4.2.6) in a sys-

tem of drill-down equations. Here a symptom is explained, top-down, level-by-level,

in the symptom’s downset. In this manner, the explanation approach for symptoms

in multi-dimensional data seems quite similar to the data mining process at mul-

tiple dimension levels. Especially, the idea of progressive deepening (Han 1995) is

very “natural” in explanation; start symptom detection on an aggregated level in the

symptom’s downset and progressively deepen it to find the causes for that symptom

at lower levels in its downset. This idea we adopt for top-down explanations in OLAP.

In this case the explanation process of an exceptional cell value ∂yiq(c) = q1 in

a cube C = [i1 . . . iq . . . in], can be continued top-down over some analysis path p in

L, to the base cube CB. Here the explanation generation procedure is based on the

computation of the inf-measure for the same measure y(c) for different cells in the

downset {↓ c}.
Formally, this procedure can be written as follows. If ∂yiq(c) = q is an exceptional

cell value in a cube C then the causes one level deeper in its down set {↓ c}, can be

computed by using the following expression for the inf-measure:

inf(ya;iq−1(c′), ya;iq(c)) = ya;iq−1(c′)− yr;iq−1(c′), (4.12)

where y is an additive measure, as defined in Definition 2.20. This is a direct result

of Equation 4.6. In the case that y is an average drill-down measure, as defined in

Definition 2.21, then

inf(ya;iq−1(c′), ya;iq(c)) =
1

|R−1q (C)|(y
a;iq−1(c′)− yr;iq−1(c′)). (4.13)

In addition, the above expressions for the inf-measure can directly be used in expres-

sion (4.4) to determine sets of contributing and counteracting causes.

1where yiq (c) is the shorthand notation of yi1...iq...in(c).
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Example 4.4.1. Suppose the event to be explained is 〈profita(2010, Germany, Beer),

∂profit=“high”, profitr(2009, Germany, Beer)〉, where the results from the previous

year are used as reference objects. The increase in profit on the Year level is examined

on the Quarter level of the Time dimension. The corresponding additive drill-down

equation is

profit(2010,Germany,Beer) =
4∑

j=1

profit(2010.Qj,Germany,Beer).

The method yields the following results, taking RM1 (see expression (4.5)) with frac-

tions T+ = T− = 0.9. In Table 4.2 a comparison is made between profit(2010,

Germany, Beer) and profit(2009, Germany, Beer) (norm). From the data in the

table it follows that Cb = {profit(2010.Q3, ., .), profit(2010.Q4, ., .)} and Ca =

{profit(2010.Q1, ., .)}. Cbp = {profit(2010.Q4, ., .)} since only profit(2010.Q4, ., .)

is needed to explain the desired fraction on inf(Cb, profit(2010, Germany, Beer)) and

Cap = {profit(2010.Q1, ., .)}.

Table 4.2: Data for explanation of ∂profit(2010, Germany, Beer)=“high”.

norm (2009) actual (2010) inf

profit(2010, Germany, Beer) 100 150
profit(2010.Q1, ., .) 25 0 -25
profit(2010.Q2, ., .) 25 25 0
profit(2010.Q3, ., .) 25 26 +1
profit(2010.Q4, ., .) 25 99 +74

The result of top-down explanation is an explanation tree of causes T , where

the root of the tree is ∂y(c) = q with two types of children, corresponding to its

parsimonious contributing and counteracting causes respectively. A node in T that

corresponds to a parsimonious contributing cause is a new symptom on a lower level

that can be explained further. A node that corresponds to a parsimonious counter-

acting cause has no successors. The corresponding algorithm is Algorithm 5. The

output of this algorithm is a tree of causes.

Moreover, there are numerous explanation paths from the root to the leaf nodes

in the explanation trees generated by Algorithm 5. This implies that in general many
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Algorithm 5 Algorithm for top-down explanation in drill-down equations

Initialization:
yi(c) = q: a symptom in the context cube C;
L: the symptoms’s downset {↓ c} with actual and reference values;
analysis path p(C,C ′) in L;
reduction methods taken from {RM1,RM2,RM3};

Computation:
t := 1;
k := |p(C,C ′)|;
A← C where A = [i1i2 . . . in] and c ∈ A;
∂yi(c) = q is the root of the explanation tree T 0;
repeat {Maximal explanation in a downset L via path p}

if a node in T t corresponds to parsimonious contributing cause then
A′ := R−1(A) where A′ = [j1j2 . . . jn] and c′ ∈ A′ and drill-down R− specified by p;
determine parsimonious causes Cbp and Cap for equation yi(c) =

∑
c′∈R−1(c)

yj(c′)

add parsimonious causes to T t as child nodes;
k := k − 1, t := t+ 1, A← A′ where A = [i1i2 . . . in] and c ∈ A;

end if
until a node corresponds to a child cell that cannot be explained in L or k := 0;

different explanations can be generated for a symptom ∂y(c) = q. In most practical

cases one would therefore apply additional reduction or pruning methods, next to

RM1, yielding a comprehensive tree T of the most important causes, by judgement of

the analyst. In this case, Algorithm 5 can also be configured with reduction methods

RM2 and RM3 (Section 4.6).

Hidden causes might also be present in {↓ c}. The approach for detecting them

is similar with the detection of hidden causes in the business model, by substituting

equations from a lower level in the system into a higher level. By slightly modifying

Algorithm 4 we can identify hidden causes in a system of drill-down equations. Instead

of substituting equations in the business model we now substitute drill-down equations

over an analysis path p in the lattice as follows. Suppose that yiq(c) is an additive

drill-down measure and that c ∈ C, c′ ∈ R−1q (c), and c′′ ∈ R−1p (c′). Hidden causes on

level [iq − 2] are identified with one-step look ahead in the following equation

yiq(c) =
∑

c′′∈R−1
p ◦R−1

q (c)

y(iq−2)(c′′), (4.14)
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which is the result of substituting

y(iq−1)(c′) =
∑

c′′∈R−1
p (c′)

y(iq−2)(c′′)

into equation

yiq(c) =
∑

c′∈R−1
q (c)

y(iq−1)(c′).

The substitution of drill-down equations related to cells in {↓ c} can be continued,

level by level in p, until the drill-down equations related to CB. Here a similar

reasoning is applied as in the proof of Theorem 2.3.1.

In general, notice that different analysis paths in the same lattice L of drill-

down equations, corresponding to the same set of drill-down equations in a different

order, may produce explanatory trees with slightly different structures. A reason

for this phenomenon is the use of specific reduction measures and/or the presence of

cancelling-out effects in the data. For example, when parsimonious sets of causes are

constructed for a symptom with RM1, only parsimonious causes are examined further

by the algorithm. In that case, a cause might become parsimonious in one analysis

path and non-parsimonious in the other.

4.4.2 Greedy explanation

In this section, an exceptional cell ∂y(c) in some cube C = [i1i2 . . . in] is explained.

This is done in a case where only additive drill-down equations from the exceptional

cell’s downset {↓ c} are applied. For this purpose, a greedy method of explanation is

proposed that utilizes the transitivity property, a feature which is present in additive

systems of drill-down equations. This method is implemented in an algorithm and

illustrated in an OLAP sales database. Finally, greedy explanation is discussed in

systems of average and maximum/mimimum drill-down equations.

System of additive drill-down equations

If ∂y(c) is an exceptional cell value in a cube C, and y is an additive drill-down measure

then this cell value can also be expressed in the cell values at lowers values in the cube,

by repeatedly applying additive drill-down equations (see Theorem 2.3.1). For the
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determination of the influence of a cell in the downset of c on y(c) we derive expression

4.15, which is similar to expression 4.12. This property is called transitivity:

Theorem 4.4.1. (Transitivity). If Cp = [i1, i2, . . . , in] and Cq = [j1, j2, . . . , jn] are

cubes in L where Cq ≤ Cp, c ∈ Cp and c′ ∈ Cq, and y is an additive drill-down

measure, then

inf(ya;j(c′), ya;i(c)) = ya;j(c′)− yr;j(c′), (4.15)

where i = i1i2 . . . in and j = j1j2 . . . jn, under the conditions of Section 4.2.4.

Proof.

We define S = Ri1−j1
1 ◦Ri2−j2

2 ◦ · · · ◦Rin−jn
n and xj = yj(c′) then

inf(xa;j
i , ya;i(c)) = f(xr;j

−i, x
a;j
i )− yr;i(c) =

(by applying Theorem 2.3.1)∑
c′∈S(c)

xr;j
−i + xa;j

i − yr;i(c) =∑
c′∈S(c)

xr;j
−i + xa;j

i − ∑
c′∈S(c)

xr;j =∑
c′∈S(c)

xr;j
−i + xa;j

i − (
∑

c′∈S(c)
xr;j
−i + xr;j

i ) = xa;j
i − xr;j

i =

ya;j(c′)− yr;j(c′).�

In general, the computation of influence values for a symptom ∂y(c) = q with Equa-

tion (4.15), is based on the same measure y(c) computed for different cells in {↓ c}.
For the application of Equation (4.15) we therefore need both the actual values ya and

the reference values yr for the symptom’s downset {↓ c}. In other words, we need a

sublattice L′ with base cube Cq on level [j1j2 . . . jn] and top cube c on level [i1i2 . . . in]

with actual and reference values for all cubes in L′. The actual values ya are directly

available in L′ by the application of roll-up operations on the base cube. However,

the availability of reference values yr depends on the type of normative model R that

is selected for exception identification. If the normative model is internal then the

reference values are simply obtained by roll-up operations on the reference values in

base cube Cq and if the normative model is external then the reference values have

to be computed for (part of) the symptom’s downset. In Section 4.7, we discuss how

to construct chains of reference values in L′ for each type of normative model R that

is applicable.
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Theorem 4.4.1 implies that in a system of drill-down equations the influence of a

variable yj(c′) on any ancestor variable in its upset {↑ c′} is given by ya;j(c′)−yr;j(c′).

Transitivity greatly simplifies the computation of influence values in the upset of a

cell, because we only have to compute the difference between the actual and reference

value of a cell, to obtain the influence values on any of its ancestors in its upset,

instead of repeatedly applying Equation (4.3). This is illustrated in the following

example.

Example 4.4.2. Using the data in Section 4.4.2 the transitivity property reads:

inf(profit230(., .,Golf Equip.Irons.Titan Irons), profit231(., .,Golf Equip.Irons)) =

inf(profit230(., .,Golf Equip.Irons.Titan Irons), profit232(., .,Golf Equip)) =

inf(profit230(., .,Golf Equip.Irons.Titan Irons), profit233(., .,All-Products)) =

5, 959− 2, 507 = 3, 452.

With Theorem 4.4.1 we can simplify the definition of causes, as formulated in

4.4, for a lattice system of additive drill-down equations. The set of contributing

(counteracting) causes Cb (Ca) for a symptom ∂y(c) in L where y is an additive

drill-down measure and Cp = [i1i2 . . . in] and Cq = [j1j2 . . . jn] are cubes in L where

Cq ≤ Cp and c ∈ Cp and c′ ∈ Cq, consists of the set of successors from the downset

{↓ c} such that

inf(yj(c′), yi(c))× ∂yi(c) > 0 (< 0). (4.16)

An example is given in Section 4.4.2.

Additionally, the transitivity property has implications for the construction of

parsimonious sets of causes. Again assume that Cp = [i1i2 . . . in], Cq = [j1j2 . . . jn]

and Cr = [k1k2 . . . kn] are cubes in L where Cr <= Cq <= Cp, c
′′ ∈ Cr, c

′ ∈ Cq and

c ∈ Cp. The implications are formulated as

y(c′) ∈ Cbp(∂y(c)) ∧ y(c′′) ∈ Cbp(∂y(c))→ y(c′′) ∈ Cbp(∂y(c
′)),

y(c′) ∈ Cap(∂y(c)) ∧ y(c′′) ∈ Cap(∂y(c))→ y(c′′) ∈ Cap(∂y(c
′)).

(4.17)

In words, if the variables y(c′) and y(c′′) are in the parsimonious contributing set of

causes for the symptom ∂y(c), then the variable y(c′′) is also in the parsimonious set of

contributing (counteracting) causes for the symptom ∂y(c′). With these implications

we can connect (disconnected) causes to form an explanation tree T .
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At last, we design an algorithm for the explanation of a symptom ∂y(c). In

this algorithm we utilize Equation 4.15 (Theorem 4.4.1) to compute influence values

and expression 4.16 for the determination of the symptom’s causes. The inputs for

the algorithm are a symptom ∂y(c) and an aggregated influence table. This table

is a generalization of the influence table, for one or more drill-down paths in the

symptom’s downset, with entries for the actual, norm and influence values. For a

database with actual values ya and reference values yr and c ∈ C the influence values

are computed as inf(ya(c′), ya(c)) = ya(c′)− yr(c′) for all c′ ∈ {↓ c}. The aggregated

table is composed out of a separate column for each dimension level and columns

for all its actual, norm, and influence values. Each dimension level corresponds to a

record in the table. The general form of the aggregated influence table for a drill-down

path within dimension Dq is given in Table 4.3. In this table we fill in the dimension

Table 4.3: General form of the aggregated influence table for dimension Dq.

D
iq−1
q D

iq−2
q . . . D0

q Norm values Actual values Inf. values

. . . . . . . . . . . . . . . . . . . . .

level instances in the appropriate columns level by level. For an aggregated dimension

level instance we fill in the term ‘All’ for its successors in the corresponding columns

on its right hand side in the table. In Table 4.4, an example is presented of an

aggregated table for the Product dimension and the measure profit. The main reason

to construct this table is to have one joint structure with all the influence values for

cells in (part of) the symptom’s downset. By ranking the influence values in this table

we can easily determine significant causes for the symptom under consideration.

Basically, the algorithm for explanation is composed of three main steps. In the

first step the aggregated table is constructed for the symptom’s downset. In the

second step the causes are determined greedily in the aggregated table by selecting

the n largest causes and filtered by application of heuristics. In the final step the

explanation tree is constructed possibly, as the algorithm’s output. The pseudo code

for the algorithm is given in Algorithm 6.

Compared with top-down explanation (Section 4.4.1), greedy explanation always

identifies the largest causes - independently from their level in the aggregation lattice
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Algorithm 6 Greedy algorithm for explanation in a system of additive drill-down
equations

Initialization:
∂yi1...iq...in(c) = q: a symptom in context cube C from L;
downset {↓ c} with actual and reference values, making up L′ with top (c) and base (CB);
analysis path p in L′;
reduction methods taken from {RM1, RM2, RM3, RM4};

Computation:
Construct the aggregated table for the symptom’s downset based the path p;
For each record in the aggregated table compute the influence value with Equation (4.15);
Determine contributing and counteracting causes with Equation (4.16);
Sort the influence values in the table with a sorting algorithm;
repeat {Greedily determine the largest causes for ∂y...iq...(c) = q the root of T}

Add to the root node (T 0) the successor contributing and counteracting variables with the
highest influence values;

until the n-th largest cause is determined or the T+ (T−) is explained on each cube in P ;
repeat {Representation of explanation tree: Reorganise T in line with Equation (4.17)}

Add an edge between a descendant and its most direct ancestor;
Remove the edge between the descendant and its most distant ancestor.

until For each cause its ancestry is determined in the downset.

- because significant causes are determined globally over the whole (or at least a large

part of) symptom’s downset, instead of locally per drill-down equation. We illustrate

this notion with the following example. Suppose that in Figure 4.1 all equations

are additive, where y = x1 + x2 and x2 = z1 + z2, and that the inf(x1, y) = 10,

inf(x2, y) = 1, inf(z1, y) = 100, and inf(z1, y) = −99. In this situation, greedy

explanation first identifies z1 as the largest contributing cause, after that it identifies

z2 as the largest counteracting cause, etc. It is obvious that z1 ∈ Cbp(y) is determined

when T+ = 0.9.

Example: Greedy explanation in financial data

In this section, we present an example of the explanation of a symptom in the Product

dimension of an OLAP database with sport equipment financial figures, with greedy

explanation (Algorithm 6). The star schema of the database is depicted in Figure 2.1.

The specification of the symptom to be explained is: 〈profita(2001, Netherlands, All-
Products), ∂profit233 = −9, 803=“low”, profitr(2000, Netherlands, All-Products)〉.
The algorithm is configured with n = 20 (RM4), to present the 20 largest contributing

and counteracting causes to the business analyst. Table 4.4, presents the aggregated
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table for the explanation of this symptom. The table contains all the 141 combinations

of instance elements of the Product dimension’s hierarchy, ordered over the absolute

values of their influence values from high to low. Because we analyse a low exception in

this example, a negative influence value indicates a contributing cause and a positive

influence value indicates a counteracting cause in the table.

Figure 4.2 shows two intermediate substeps of Algorithm 6 after 3 rounds, i.e.

the algorithm is configured for n = 3. The upper figure shows the first step that

determines in this case the first 3 largest causes: Golf Equipment of the ProductLine

level as a contributing cause (−7, 958), Golf Equipment.Woods on the ProductType

level as a contributing cause (−3, 277), and Golf Equipment.Irons.Titanium Iron on

the Product level as a counteracting cause (+3, 452). In notation, Cb= {Golf Equip-

ment.Woods, Golf Equipment} and Ca= {Golf Equipment.Irons.Titanium Iron}. The
second step depicted in the lower figure reorganises the explanation tree consistent

with the structure of the dimension hierarchy with Equation (4.17). Here an edge is

connected in the explanation tree between the node Woods and the node Golf Equip-

ment and the direct edge between the symptom and the node Woods is removed.

Besides, an edge is added between Titanium Iron and Golf Equipment, and the edge

between the symptom and Titanium Iron is removed. In this manner, the causes

identified by greedy explanation are mapped again to the hierarchy of the Product

dimension to show their ancestry. Accordingly, the identified causes are presented

intuitively to the business analyst and are accessible for drill-down operations.

Figure 4.3 shows the explanation tree T for the symptom with the 20 largest

causes identified in the Product dimension. The algorithm identified 14 significant

contributing causes and 6 significant counteracting causes. The sets of causes are

given by Cb= {Golf Equipment.Woods, Golf Equipment, . . ., Golf Equipment.Golf

Acc.Pro Golf Bag} and Ca= {Golf Equipment.Irons.Titanium Iron, Camping Equip-

ment.Tents, . . ., Golf Equipment.Irons}. In the explanation tree contributing causes

are indicated with a straight line and counteracting causes are indicated with a dotted

line. Symptoms that have the reverse direction compared to the root symptom are

indicated with an uparrow ↑ for a high symptom and with a downarrow ↓ for a low

symptom.

The complete tree in the figure describes why the sales in the Netherlands were
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Table 4.4: Aggregated table for the Product dimension where the actual object is the
year 2001, the norm is the year 2000, and the influence values for instances within the
Product dimension are related to the exceptional cell profit233(2001, The Netherlands,
All-Products).

Nr. ProductLine ProductType Product Norm Actual Influence
P 2 P 1 P 0 (2000) (2001)

All All All 156,658 146,855
1 Golf Equip. Woods All 34,493 26,116 -8,377
2 Golf Equip. All All 54,999 47,041 -7,958
3 Golf Equip. Irons Titan. Ir. 2,507 5,959 3,452
4 Golf Equip. Woods St. Woods 10,440 7,420 -3,020
5 Camp. Equip. Tents All 28,685 31,256 2,571
6 Mount. Equip. All All 21,735 19,235 -2,500
7 Golf Equip. Woods Hail. T. Wds 7,134 4,830 -2,304
8 Golf Equip. Woods Lady Hail. T. Wds 9,152 7,198 -1,954
9 Camp. Equip. All All 57,521 59,090 1,569

10 Golf Equip. Irons Lady Hail. T. Ir. 4,236 2,800 -1,436
11 Mount. Equip. Rope All 11,252 9,998 -1,254
12 Camp. Equip. Tents Star Gazer 6 5,483 6,620 1,137
13 Golf Equip. Irons Hail. St. Ir. 5,500 4,400 -1,100
14 Golf Equip. Woods Lady Hail. St. Wds 7,767 6,668 -1,099
15 Camp. Equip. Tents Star Gazer 2 5,400 6,322 922
16 Mount. Equip. Tools All 6,062 5,289 -773
17 Golf Equip. Irons All 15,764 16,503 739
18 Mount. Equip. Rope Husky Rope 200 4,425 3,757 -668
19 Pers. Acc. All All 21,727 21,104 -623
20 Golf Equip. Golf Acc. Pro Golf Bag 1,990 1,432 -558
. . . . . . . . . . . . . . . . . . . . .
141 Mount. Equip. Tools Gran. Extreme 1580 1664 84
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Figure 4.2: Illustration of two intermediate steps of the greedy algorithm for explana-
tion in the Product dimension. The right figure shows the determination step, where
the 3 largest causes are identified. The left figure shows the reorganisation step, where
the causes are re-organised based on the structure in the dimension hierarchy.

quite low in the year 2001 compared to the previous year within this dimension. A

brief business interpretation of the explanation tree reads as follows. The largest

causes that explain the difference are identified as elements of the Golf Equipment

ProductLine. Striking causes are products in the ProductType Woods, that have

performed rather badly (−8, 377). Conversely, the ProductType Irons performed

relatively well - depicted in the three as a relatively large counteracting cause (+739).

Although, the ProductType Irons as a whole performed positively, indicated with an

uparrow, because of the large contributing cause Hailstorm Titanium Irons (+3, 452),

it does have two large counteracting causes associated with it namely Lady Hailstorm

Titanium Irons (−1, 436) and Hailstorm Steel Irons (−1, 100).
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Figure 4.3: Illustration of the explanation tree T for a symptom using the Product
dimension with the algorithm for greedy explanation. This explanation tree presents
the 20 most largest contributing and counteracting causes to the analyst.

System of average or maximum/minimum drill-down equations

For the greedy explanation of an exceptional cell value ∂y(c) = q, in a system of

average drill-down equations, we determine inf(ya;j(c′), ya;i(c)):

Theorem 4.4.2. (Influence measure for systems of average drill-down equations). If

Cp = [i1i2 . . . in] and Cq = [j1j2 . . . jn] are cubes in L where Cq ≤ Cp, c ∈ Cp, c
′ ∈ Cq,

and S = Ri1−j1
1 ◦Ri2−j2

2 ◦ · · · ◦Rin−jn
n , i = i1i2 . . . in, j = j1j2 . . . jn, and

ya;i(c) = 1
|Cq |(

∑
c′∈S(c)

ya;j(c′)) and

yr;i(c) = 1
|Cq |(

∑
c′∈S(c)

yr;j(c′)),

where y is the average drill-down measure (2.3.2), then

inf(ya;j(c′), ya;i(c)) =
1

|Cq|(y
a;j(c′)− yr;j(c′)). (4.18)
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Proof. We define xj = yj(c′).

inf(xa;j
i , ya;i(c)) = f(xr;j

−i, x
a;j
i )− yr;i(c) =

1
|Cq |

∑
c′∈S(c)

xr;j
−i +

1
|Cq |x

a;j
i − yr;i(c) =

1
|Cq |

∑
c′∈S(c)

xr;j
−i +

1
|Cq |x

a;j
i − 1

|Cq |
∑

c′∈S(c)
xr;j =

1
|Cq |

∑
c′∈S(c)

xr;j
−i +

1
|Cq |x

a;j
i − ( 1

|Cq |
∑

c′∈S(c)
xr;j
−i +

1
|Cq |x

r;j
i ) =

1
|Cq |x

a;j
i − 1

|Cq |x
r;j
i =

1
|Cq |(y

a;j(c′)− yr;j(c′)).�

Here transitivity does not hold, because of the form of expression 4.18. The in-

fluence of a variable ya;j(c′) on elements in its upset {↑ c′}, will usually decreases per

roll-up in the lattice L, because the number of cells in the denominator of the expres-

sion will increase, while its numerator (ya;j(c′)− yr;j(c′)) remains constant. However,

because of Theorem 4.4.2 we can use Algorithm 6, albeit with an extra computation,

for the explanation of an exceptional cell value ∂y(c), where y is an average drill-down

equation, within the exceptional cell’s downset {↓ c}. An important result is that

we can construct an aggregated influence table for the symptom, where the influence

values from elements in its downset can be sorted from high to low, and that signifi-

cant causes can be determined in the sorted table accordingly. To construct this table

we need to store the number of cells of each cube C in the analysis path to compute

Equation (4.18).

In addition, for the greedy explanation of an exceptional cell in a system of max-

imum drill-down equations (see Equation 2.18) we give the expression for the influ-

ence measure. Suppose that y is a maximum drill-down measure and xj = yj(c′) then

inf(xa;j, ya;i(c)) is given by the following two cases,

1. if xr;j
i was the maximum, denoted by xr;j

i (c) = yr;i(c), then

inf(xa;j
i , ya;i(c)) =

{
xa;j
i − xr;j

i if xa;j
i = max(xr;j

−i, x
a;j
i ),

xr;j
l − xr;j

i if xr;j
l = max(xr;j

−i, x
a;j
i ),

(4.19)

2. if xr;j
i was not the maximum, but xr;j

l = yr;i(c), then

inf(xa;j
i , ya;i(c)) =

{
xr;j
l − xr;j

l = 0 if xr;j
l = max(xr;j

−i, x
a;j
i ),

xa;j
i − xr;j

l if xa;j
i = max(xr;j

−i, x
a;j
i ).

(4.20)
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The expression for the influence measure for a minimum drill-down equation (see

Equation 2.19) is defined similarly. Because of Equations (2.20) and (2.21) we can use

Algorithm 6 for explanation generation in systems of maximum (minimum) equations.

The result of the algorithm is an explanation tree where all the dimension attributes

have the maximum (minimum) value.

4.5 Explanation in a system of mixed equations

In this section, explanation in a system of mixed equations is discussed. For this pur-

pose we develop a combined approach. Where multi-level explanation (see Algorithm

4) is applied, configured with or without look-ahead, if a business model equation is

evaluated, and top-down explanation (see Algorithm 5) or greedy explanation (see

Algorithm 6) is applied, if a drill-down equation is evaluated.

In the application of multi-level explanation in the business model M of a multi-

dimensional database, the explanation process of a symptom ∂y(c) = q is continued

top-down from M0 until Md. Formally, this procedure is stated as

inf(xi(c), y(c)) = f(xr
−i(c

′), xa
i (c))− yr(c′), (4.21)

where the inf-measure is evaluated on the actual cell c and the reference cell c′ from

cube C = [i1 . . . iq . . . in]. Here the explanation procedure is based on the computation

of the inf-measure for different measures xi(c) from M that are evaluated on the same

cell c within the context cube C. In the case that R is a statistical normative model

then c = c′ and in the case that R is a managerial normative model then c differs

from c′ in the single dimension attribute dq that is selected for reference, such that

c = (d1, . . . , dq, . . . , dn) and c′ = (d1, . . . , d
′
q, . . . , dn). Naturally, if the cell c in the

cube C is selected by the OLAP analyst, the above expression for the inf-measure

simply reduces to expression (4.3).

For explanation in a mixed system of equations a combined analysis path is re-

quired over a path in the aggregation lattice and the business model. Such a path is

composed out of series of drill-down operations over the exceptional cell’s downset al-

ternated with series of “drill-down operations” in the exceptional cell’s business model.

Such a combined analysis path can be represented in a 3-dimensional analysis cube, a
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straightforward extension of the 2-dimensional analysis table, as presented on page 33.

In this cube the columns represent the dimensions of the cube from D1, D2, . . . , Dn,

the rows represent the levels of the lattice L from level (i1 + i2 + . . . + in) to level

(j1 + j2 + . . .+ jn) + 1, and the layers represent the levels in the business model from

level M0 to level Md. A cell with the value −1 in the analysis cube represents a

drill-down in the exceptional cell’s downset or a drill-down in its associated business

model from level Mp to level Mp+1.

Example 4.5.1. The symptom to be explained is profit111(c). Here the drill-down

equations are derived from the lattice of cubes in Figure 2.4 and the business model

equations are derived from the sales model given in Table 1.1. The combined analysis

path is given by [1, 1, 1]→ [0, 1, 1]→ [0, 0, 1]→ [0, 0, 0]→M0;1 →M1;2 →M2;3 (see

Figure 4.4).

Figure 4.4: Example of an combined analysis path over both drill-down and business
model equations.

Additionally, we propose a straightforward algorithm for explanation in a mixed

system of equations (Caron and Daniels 2005). In this algorithm, Algorithm 4 is

invoked if a business model equation is considered in the combined analysis path and

Algorithm 5 or 6 is invoked if a drill-down equations is considered in the combined

analysis path. The pseudo-code for the algorithm is presented in Algorithm 7.
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Algorithm 7 Algorithm for explanation in a mixed system

Initialization:
S: yi1i2...in(c) = q: a symptom in cube C;
analysis path p[t] in L;
L: symptom’s downset {↓ c} with actual and reference values;
M : business model with actual and reference values;
reduction methods taken from {RM1, RM2, RM3};

Computation:
t=1;
repeat {Explanation in a hybrid system of equations}

if Equation in P [t] is a business model equation in M then
invoke Algorithm 4 with parameters (S,M,RM, q = 0)

else if Equation in P [t] is a drill-down equation in L then
invoke Algorithm 5 or 6 with parameters (S,L,RM);

end if
t=t+1;

until the last step in the analysis path P [t];

4.6 Reducing information overload

Because every applicable equation in the multi-dimensional database yields a possible

explanation, the number of explanations obtained for a single symptom can be very

large. It is equal to the number of paths from the cell to the base, see formula (2.2.3)

in Section 2.2.5. In order to avoid information overload, we can reduce the number

of explanations, by applying one or more reduction methods, denoted in shorthand by

RM. We propose five generic reduction methods (RM1-RM5) to reduce the number

of explanations.

4.6.1 Parsimonious causes (RM1)

Feelders and Daniels (2001) proposed a reduction method to construct parsimonious

sets of causes, denoted by RM1, as described in Section 4.2.3 and expression 4.5. Ob-

viously, RM1 can also be applied on explanations generated for symptoms in a system

of drill-down equations. Additionally, the value for T+ (T−) has to be determined

by the business analyst by adapting the value to the internal structure of the multi-

dimensional database. By inspecting the generated explanation trees iteratively the

analyst makes a selection between significant and insignificant causes. In our exper-

iments with multi-dimensional data sets, described in Chapter 6, it was found that
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fractions with values between 0.7 and 1 are often appropriate.

4.6.2 Specificity (RM2)

The number of explanations is reduced by applying a measure of specificity for each

applicable equation in the symptom’s downset or business model. This measure,

denoted by RM2, quantifies the specificity or “interestingness” of the explanation

step. The measure is defined as:

S = specificity =
# possible causes

# actual causes
. (4.22)

The number of possible causes is the number of RHS elements of each equation,

and the number of actual causes is the number of elements in the parsimonious set of

causes. In general, we prefer explanation steps with a relatively high specificity value.

Using this measure we can order the explanation paths from specific to general and

if desired only list the explanation path in the most specific dimension(s). To do this

each dimension has to be explored to compute S, only the explanation step in the

dimension for which S is maximal is reported. In particular, if we explain a symptom

∂yiq(c) solely by applying drill-down equations from the downset {↓ c}, we can write

the measure of specificity as

S =
|Diq−1

q |
|Cbp|+ |Cap| , (4.23)

for a dimension Dq. Notice that this measure is to some extent similar to the rule

evaluation measure “specificity” used in association rule learning (Lavrac et al. 1999).

4.6.3 Reduction heuristic (RM3)

The number of explanations for an exceptional cell ∂y(c) can also be limited simply by

reducing the number of drill-down equations (i.e. cubes) in the analysis path by some

criterium of interestingness. In other words, the total set of applicable drill-equations

is reduced to a smaller set of “interesting” drill-down equations. This criterium of

interestingness, denoted by RM3, is formed by the application of a number of typical

reduction heuristics :
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RM3a Explanation in an user-defined analysis path p in the downset {↓ c}. For ex-

ample, the analyst wants to explain the symptom in the following sequence of

dimensions over the downset: Time (on a high level), Location (on an interme-

diate level), and Product (on a low level).

RM3b Explanation in a single dimension Dq from the downset {↓ c}. For example,

the analyst is only interested in an explanation in the Product or Location

dimension, to identify the causes in each of these dimensions separately. Here

the algorithm for explanation has to be executed for each selected dimension.

4.6.4 Select the largest causes (RM4)

In Algorithm 6 a specific reduction method can be applied, denoted by RM4, that

lets the analyst select the number of significant contributing (counteracting) causes

he/she wants to explore for a particular symptom. In this way the analyst can simply

select only the n largest contributing and/or counteracting causes. Algorithm 6 first

identifies the largest cause, then that the second largest cause and so on, until the

n largest causes are found. The reduction method can be configured for a single

dimension Dq or for multiple dimensions at the same time. For example, the analyst

can generate a top-10 list of largest causes for only the Product dimension or for all

available dimensions in the exceptional cells’s downset.

The drawback of RM4 is that the choice for a certain n by the analyst is rather

arbitrary. In this manner the analyst might miss a number of “large causes” that

are just out of the selected set. To address this issue, we can combine the concept

of parsimony in RM1 with greedy explanation, to construct an alternative version of

RM4, as a compound reduction measure. In this approach we greedily explain the

symptom for a certain dimension and stop explaining on a certain dimension level

until the desired fraction T+ is explained. The selected fraction can hold for a number

of dimensions, a single dimension, or for a single level in the dimension hierarchy. For

example, if we greedily explain a symptom in a dimension Dq, with three levels in

the dimension hierarchy, with fraction T+ = 0.9, the reduction will explain at least

90% of the difference on each of the three levels in the dimension hierarchy.
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4.6.5 Similarity reduction (RM5)

In the problem identification phase the analyst selects a set of symptoms from a

context cube C. In general, only a fraction of the cells in a cube is taken into account

for explanation. Sometimes it might be interesting from a business perspective to

explain a whole range of similar exceptional cells. Quite often the explanation trees

T will also be similar. In that case one could report the similarity patterns or generic

explanations in the generated trees (RM5). Similarity is defined as common significant

contributing and counteracting causes, i.e. branches that the trees have in common.

The common contributing causes for exceptional cell values ∂y(c1), ∂y(c2), . . ., ∂y(cn),

in the context cube C = [i1i2 . . . in] are given by

Cbsimilarity =
n⋂

i=1

Cb(∂y(ci)), (4.24)

where n is the number of cells in the range. An equivalent approach, based on graph

theory, is to simply determine the maximal common subtree for the set of generated

explanation trees.

Similarity patterns might answer questions as whether we get generic explanations

for corresponding symptoms. For example, if we explain low revenues in some sales

cube, the question might be whether we see the same pattern for all countries where

the company is active or for all products groups the company sells.

In contrast with the other reduction methods, that work on the level of an in-

dividual explanation for an exceptional cell, RM5 works on the level of a group of

explanations, to produce a generic explanation for a range of cells in a context cube.

In order to be able to create generic explanation for a range of cells, we first need

to give explanations for each individual cell with a top-down explanation (see Algo-

rithm 5) or a greedy explanation (see Algorithm 6), configured with a fixed subset of

reduction methods out of {RM1, RM2, RM3, RM4}. Subsequently, the detection of

generic explanation is divide into three basic steps:

1. Determine the range of cells c1, c2, . . ., cn in the context cube C;

2. Generate for each cell in the range an explanation tree, with a specific algorithm

for explanation and a fixed set of appropriate reduction methods;
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3. Determine the similarity pattern between the generated explanation trees with

expression (4.24).

In the above approach similarity is defined as structural similarity, i.e. similarity

between the nodes of the explanation trees, independent of the weights (i.e., influence

values) of the branches. Alternatively, for future research it might be interesting to

develop a method to identify similarity patterns that are defined in terms of cor-

responding values for the influence values within some bandwidth. This approach

would produce similarity patterns that give more information.

4.7 Consistency of reference values

In this section, we investigate under what conditions the reference values satisfy

the functional equations of OLAP or business model equations, i.e. under what

conditions the consistency constraint (see Definition 4.1) is satisfied. We discuss how

consistent reference objects can be formed for the different types of normative models,

that are discussed in Chapter 3. Actual values in the OLAP context are consistent

because they satisfy the drill-down equations (Equation (2.12)) or business model

equations (Equation (2.22)) by definition. However, for each type of normative model

R, it has to be verified whether these equations also hold for the reference values.

Often reference values are computed directly from the actual values in the multi-

dimensional database. When the business model or OLAP equation (f) commute

with the operator that computes the reference values (R), the consistency constraint

holds, because then yr = R(y) = R(f(x)) = f(R(x)) = f(xr).

There is a natural canonical way to construct a consistent chain of reference objects

if the above requirement is satisfied. If the chain is formed with strictly drill-down

equations, we can create a path in the downset of {↓ c} level by level, with actual and

reference values for successors of c. And if the chain is formed with strictly equations

from the business model M , we can obtain a business model with actual and reference

values for the business measures. In the remainder of this section we discuss for each

type of normative model R and for each type of equation, drill-down and business

model, how consistent reference values can be constructed.
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4.7.1 R is a planning/budget model

If R is selected to be a planning/budget model (Section 3.2.1), yr(C) is usually com-

puted directly from the cube with actual values ya(C). If we explain an exceptional

value by a drill-down equation y (Definition 2.20), yr;iq(c) is determined by

yr;iq(c) = p · ya;iq(c),

where p is some constant value that specifies the budget increase/decrease, then the

reference values for yiq−1(c′) are determined by the model

yr;iq−1(c′) = p · ya;iq−1(c′).

And if an exceptional value is explained by a business model equation (Definition

2.22), the formation of reference values depends obviously on the functional form of

the function f (Section 4.2.4).

4.7.2 R is an extra/intra-organizational model

If R is an extra-organizational model (Section 3.2.2), we need to construct consistent

reference values, typically composed out of branch averages, for business equations in

M . Whether the consistency constraint holds, depends on the form of the function f

in the business equation. If the function f is additive, consistent reference values are

obtained. Consider the additive business model equation on level iq

yiq(c) =
n∑

i=1

x
iq
i (c).

The branch average for the measure yiq(c) is given by

yr;iq(c) =
1

|Diq−1
q |

∑
c′∈R−1

Dq
(c)

yiq−1(c′),

and the branch average for the measure x
iq
i (c) is given by

x
r;iq
i (c) =

1

|Diq−1
q |

∑
c′∈R−1

Dq
(c)

x
iq−1
i (c′).
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We want to show that:

yr;iq(c) =
n∑

i=1

x
r;iq
i (c).

Now:

n∑
i=1

( 1

|Diq−1
q |

∑
c′∈R−1

Dq
(c)

x
iq−1
i (c′)) = 1

|Diq−1
q |

∑
c′∈R−1

Dq
(c)

yiq−1(c′) = yr;iq(c).�

If the function f is non-additive, see Example 4.2.1, the consistency constraint can

be violated.

In addition, if R is an intra-organizational model, reference objects are available

internally in the database, and determined in a similar way as with an historical

model, as described in the next section (see Section 4.7.3). However, here the slice

operation is used in other dimensions than the Time dimension. For example, from the

Location dimension we select a certain business unit or from the Product dimension

we select a certain product group as an intra-organizational reference object.

4.7.3 R is a historical model

If R is selected as a historical model (Section 3.2.3), the reference objects are directly

available in the cube. The historical reference objects are determined by a specific

slice operation on the Time dimension, where, e.g. the previous year is selected as

the norm. Because the reference objects are just cells in a cube C, the consistency of

reference values in drill-down equations is guaranteed by definition. Here we assume

that the first dimension in a cube C, Di1
1 , represents the Time dimension T i1 , and we

writeDi1
1 = T i1 . In general, the child reference cells in the case of pairwise comparison

for a parent cell c are determined by

yr;iq(STime=t(c)) =
∑

c′∈R−1
q (c)

yr;iq−1(STime=t(c′)).

In this case the actual cell values are identical to the reference cell values, except for

the Time dimension.

For explanation in the business model M , the reference values must satisfy Equa-

tion (2.22), while maintaining the Slice operation on the Time dimension on the same
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cell, written as STime=t(c). Because historic reference objects for M are based on in-

ternal values in the database, Equation (2.22) is consistent for the reference values.

Notice that, when the historical model is selected as the average over a number

of periods, which corresponds to the application of an additive ANOVA model with

only one main effect included for a single dimension, Theorem 4.7.1 on page 119 can

be applied directly.

4.7.4 R is a statistical model

Statistical models, in general, lead to non-consistent reference values, because many

statistical models have multiplicative terms. An exception to this general rule are

additive ANOVA models, which include main-effects ANOVA models (Section 3.4).

Suppose that A1 is an additive ANOVA model and A2 is an additive ANOVA model.

Reference values are computed by yr = A1(y
a) and xr = A2(x

a). The model is

consistent if A1◦f = f ◦A2 because then yr = A1(y
a) = A1◦(f(xa)) = f ◦(A2(x

a)) =

f(xr).

Here we state that, the reference values are consistent, if and only if, the ANOVA

model used for the child cell is a specialisation of the ANOVA model used for the

parent cell. With a specialized ANOVA model we mean a model that is the result of

a drill-down operation on one effect λq(D
iq
q ) in the ANOVA model of the parent cell.

Theorem 4.7.1. (Consistency of ANOVA models). If reference values are computed

with ANOVA models for yiq(c) and yiq−1(c′), consistency holds if

1. the ANOVA model is additive, i.e. contains no interaction effects, and

2. the ANOVA models at both levels are the same in each dimension, or it is a

model with a specialisation for dimension q to which the drill-down operator is

applied, corresponding to the lower level iq − 1 of aggregation.

The cube C in which exceptional values are identified by an ANOVA model, de-

termines the context cube in which the reference values are computed for explanation

by some equation. The constitution of the context cube depends on the type of equa-

tion selected for explanation. In the case of a drill-down equation, we might explain

an exceptional cell ∂y(c) in the context cube C = [i1 . . . iq . . . in] with a main-effects
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ANOVA model in the direction of dimension Dq. Now the reference values for the

variables on the RHS of Equation (2.12) have to be determined in the context cube

C ′ = R−1Dq
(C). In the case of an additive business model equation, we might explain

an exceptional cell ∂y(c) in a context cube C with a main-effects ANOVA model

in the business model M . Now the reference values for the variables on the RHS

of Equation (2.22) have to be determined in the same context cube C. However,

the cube C is now associated with the measures present on the RHS of the business

equation under consideration.

In the proof of Theorem 4.7.1 we distinguish between two typical cases:

Case 1) within a dimension Di1
1 which is not unfolded;

Case 2) within a dimension Di1
1 which is unfolded.

In these two cases we consider a cube C = (Di1
1 ) for an additive drill-down measure

y and where c ∈ C, c = (di11 ), and R is a main-effects ANOVA model. Notice that

without loosing generality the proof holds for an arbitrary dimension Dq in a cube

Di1
1 × . . .×D

iq
q × . . .×Din

n and for a main-effects ANOVA model that consists of any

proper subset of effects.

Proof.

Case 1) The specialization of a main-effects ANOVA model within a dimension

Dmax2
2 which is not unfolded.

Suppose we have a parent cube C = (Di1
1 , D

max2
2 ), where c ∈ C, and a child cube

C ′ = R−1D2
(C), where c′ ∈ C ′, and the additive measure y with

yi1max2(c) =
∑

c′∈R−1
D2

(c)

yi1(max2−1)(c′).

The expected value for yi1max2(c) is computed by the additive ANOVA model (see

Equation (3.3))
ŷi1max2(c) = μ+

= 1

|Di1
1 |

∑
c∈R−1

D1
(cp)

yi1max2(c),

where cp ∈ R+1
D1
(c), and the expected value for yi1−1(c′) is computed by the specialized

ANOVA model

ŷi1(max2−1)(c′) = μ− + λ(R−1D2
(dmax2

2 )) = μ− + λ(dmax2−1
2 ),
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where
μ− = 1

|Di1
1 ||D

max2−1
2 |

∑
c∈R−1

D1
(cp)

∑
c′∈D−1

2 (c)

yi1(max2−1)(c′)

= 1

|Di1
1 ||D

max2−1
2 |

∑
c∈R−1

D1
(cp)

yi1max2(c),

and

λ(dmax2−1
2 ) =

1

|Di1
1 |

∑
c∈R−1

D1
(cp)

yi1(max2−1)(c′)− μ−.

We want to show that:

ŷi1max2(c) =
∑

c′∈R−1
D2

(c)

ŷi1(max2−1)(c′).

Now: ∑
c′∈R−1

D2
(c)

ŷi1(max2−1)(c′) =
∑

c′∈R−1
D2

(c)

(μ− + λ(dmax2−1
2 ))

=
∑

c′∈R−1
D2

(c)

( 1

|Di1
1 |

∑
c∈R−1

D1
(cp)

yi1(max2−1)(c′))

= 1

|Di1
1 |

∑
c∈R−1

D1
(cp)

yi1max2(c)

= μ+ = ŷi1max2(c).�

Example 4.7.1. We illustrate the latter case with an example from the foodmart data

warehouse. We identify exceptional values in the context cube C= Year × Products

with the main-effects ANOVA model

ŷ(Year,Products) = μ+ λ1(Year) + λ2(Products).

If we now explain an exceptional cell in the direction of the Time dimension, we

compute reference objects in the context cube R−1T (C) = Year.Quarter × Products

with the specialised main-effects ANOVA model ŷ(Year.Quarteri, Products) = μ +

λ1(Year.Quarteri) + λ2(Products). Notice that this model complies with Theorem

4.7.1. Therefore, we obtain consistent reference objects i.e.:

ŷ(Year,Products) =
4∑

i=1

ŷ(Year.Quarteri,Products).

Case 2) The specialization of a main-effects ANOVA model within an unfolded

dimension Di1
1 .
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Suppose we have a parent cube C = (Di1
1 ), where c ∈ C, and a child cube C ′ =

R−1D1
(C), where c′ ∈ C ′, and the additive measure y with

yi1(c) =
∑

c′∈R−1
D1

(c)

yi1−1(c′).

The expected value for yi1(c) is computed by the additive ANOVA model (Equation

(3.3))
ŷi1(c) = μ+

= 1

|Di1
1 |

∑
c∈R−1

D1
(cp)

yi1(c),

where cp ∈ R+1
D1
(c), and the expected value for yi1−1(c′) is computed by the specialized

ANOVA model

ŷi1−1(c′) = μ−
= 1

|Di1
1 ||D

i1−1
1 |

∑
c∈R−1

D1
(cp)

∑
c′∈R−1

D1
(c)

yi1−1(c′)

= 1

|Di1
1 ||D

i1−1
1 |

∑
c∈R−1

D1
(cp)

yi1(c).

We want to show that:

ŷi1(c) =
∑

c′∈R−1
D1

(c)

ŷi1−1(c′).

Now: ∑
c′∈R−1

D1
(c)

ŷi1−1(c′) =
∑

c′∈R−1
D1

(c)

( 1

|Di1
1 ||D

i1−1
1 |

∑
c∈R−1

D1
(cp)

yi1(c))

= |Di1−1
1 | · μ−

= μ+ = ŷi1(c).�

Example 4.7.2. We illustrate this case with an example from the foodmart data ware-

house, similar as in Example 4.7.1. However, in this case, we explain an exceptional

cell in the Location dimension, we compute reference objects in the context cube

R−1L (C) = Year × Products × Country with the specialised main-effects ANOVA

model ŷ(Year, Products, Country)= μ + λ1(Year) + λ2(Products) + λ3(Country).

This model is the result of a drill-down operation on the location dimension from

the level All-Countries to the level Country. Notice that this model complies with

Theorem 4.7.1. Therefore, we obtain consistent reference objects given by

ŷ(Year,Products) =
20∑
k=1

ŷ(Year,Products,Countryk).
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Remark 4.7.1. Furthermore, we consider a special case, which is the specialization of

an ANOVA model within an unfolded dimension and with slices over the drilled-down

data. This special case is only applicable for explanation of an exceptional value in a

dimension, that is a balanced tree, where each parent has the same number of children.

This is an additional property for Theorem 4.7.1. From a practical viewpoint only

the Time dimension has this property in general, e.g. each year is composed out of 4

quarters, and each quarter is composed out of 3 months.

Suppose we have a parent cube C = (Di1), where c ∈ C, and a matrix sliced child

cube C ′ = SD
i1
1 .D

i1−1
1 =D

i1
1 .d

i1−1
1 (R−1D1

(C)) = (Di1
1 .d

i1−1
1 ), where c′ ∈ C. The number of

matrix sliced child cubes is |Di1−1
1 |. Moreover, we have an additive measure y (see

Definition 2.20) given by

yi1(c) =
∑

c′∈R−1
D1

(c)

yi1−1(c′).

The expected value for yi1(c) is computed by the additive ANOVA model (see Equa-

tion (3.3))

ŷi1(c) = μ+

= 1

|Di1
1 |

∑
c∈R−1

D1
(cp)

yi1(c),

where cp ∈ R+1
D1
(c), and the expected value for yi1−1(c′) is computed by the specialized

ANOVA model

ŷi1−1(c′) = μ−
= 1

|Di1
1 .d

i1−1
1 |

∑
c∈R−1

D1
(cp)

∑
c′∈SD

i1
1 .D

i1−1
1 =D

i1
1 .d

i1−1
1 (R−1

D1
(c))

yi1−1(c′)

= 1

|Di1
1 |

∑
c∈SD

i1
1 .D

i1−1
1 =D

i1
1 .d

i1−1
1 (R−1

D1
(cp))

yi1(c).

We want to show that:

ŷi1(c) =
∑

c′∈R−1
D1

(c)

ŷi1−1(c′).
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Now: ∑
c′∈R−1

D1
(c)

ŷi1−1(c′) =
∑

c′∈R−1
D1

(c)

( 1

|Di1
1 |

∑
c∈SD

i1
1 .D

i1−1
1 =D

i1
1 .d

i1−1
1 (R−1

D1
(cp))

yi1(c))

= 1

|Di1
1 |

∑
c∈R−1

D1
(cp)

yi1(c)

= μ+ = ŷi1(c).�

An example of this special case is given in the case study described in Section 6.3.

Remark 4.7.2. Notice that Theorem 4.7.1 only holds for additive ANOVA models.

If R is an ANOVA model with interaction terms or a contingency table model, the

chains of reference objects will usually become inconsistent because of the presence

of multiplicative terms in the equations, see, for example, Equation (3.15) or Equa-

tion (3.19). For the application of an ANOVA model with non-additive terms or a

contingency table model in explanation, consistency needs to enforced. How this can

be done is described in the following procedure:

1. Compute the expected values for all RHS elements in drill-down Equation (2.12)

or business model Equation (2.22) with the statistical model under considera-

tion.

2. Compute yr;iq(c)′ by using the same equation as for the actual values, applied

on the expected values determined in the previous step.

Obviously, this procedure creates a bias term in the explanation, because yr;iq(c)′

= ŷiq(c). As long as this bias is relatively small, this procedure will not have a

significant effect on the composition of the explanation.

4.8 Related work

In this section, we discuss some related work on the topic of computerized expla-

nation and diagnosis in the domain of business and management. There are many

contributions on technical diagnosis and medical diagnosis, see Appendix A for a brief

overview and Verkooijen (1993) for a comprehensive overview. In contrast, there are
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only a limited number of publications related to the automatic generation of explana-

tions based on business or financial models (Binbasioglu and Zychowicz 1998; Bouw-

man 1983; Daniels and Caron 2009; Courtney et al. 1987; Feelders 1993; Feelders

and Daniels 2001; Hamscher 1992; Hamscher 1994; Kosy and Wise 1984) and multi-

dimensional models (Caron and Daniels 2007; Cariou et al. 2008; Sarawagi 2001).

In Table A.1, comparison is made between four applications domains of model-based

diagnosis on a number of characteristics.

An early work related to our approach is the work of Bouwman (1983). Bouw-

man studied the diagnostic reasoning of financial analysts and compared this to the

problem solving behaviour of novices. He also developed computer programs that can

mimic the behaviour of human analysts including the shortcomings and mistakes that

occurred in their analysis. Bouwman uses a qualitative model of reasoning compared

to the quantitative model of reasoning used in this thesis.

Kosy and Wise (1984) and Kosy (1989) describe a general system for generat-

ing explanations in financial models, not directed specifically at diagnostic problem

solving. In their method no strict separation is made between contributing and coun-

teracting causes, which leads to counterintuitive results in some cases and it may

cause the system to leave out significant causes from the explanation.

Courtney et al. (1987) and Mohammed et al. (1988) describe a DSS directed

at managerial problem diagnosis. Functional relations that are allowed to sustain

explanations are restricted to linear functions however. The restriction to linear

relationships is not very realistic in a financial context. A clear distinction is made in

their system between contributing and counteracting influences similar as described

in RM1.

Hamscher (1992) discusses the motivations and foundations of model-based rea-

soning and diagnosis in the financial domain, and surveys several existing AI programs

for explanation in this domain. Moreover, Hamscher (1994) proposes a method and

develops a prototype system that automatically constructs explanations for financial

results based on a quantitative model. Their method gives information about the

relative likelihoods of individual explanations, and is opposed to our method related

to probabilistic reasoning.

Binbasioglu and Zychowicz (1998) present a diagnostic knowledge-based system
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for analyzing the financial “health” of a company. An important difference is that

they do not have an explanation methodology that gives the underlying causes for a

symptom, instead they document the interactions among the financial domain objects.

In Feelders (1993) and Feelders and Daniels (2001), a formal framework is pre-

sented for explanation and diagnosis of business performance with both qualitative

and quantitative information. The essence of this framework is discussed in Section

4.2. In this chapter, we extend this framework on several points. In Section 4.2, we

introduce the consistency constraint and explain the interpretation of the influence

measure. In Section 4.3, we extend the framework in order to deal with the problem

of cancelling-out effects. In Sections 4.4 and 4.4.2 we discuss how the framework can

be used in explanation in multi-dimensional databases. In Section 4.6, we describe,

next to the concept of parsimonious causes, several new methods to reduce informa-

tion overload in explanation. Lastly, in Section 4.7, we discuss for different types of

normative model how the consistency constraint is satisfied.

In Sarawagi (2001), an explanation operator is presented for multi-dimensional

data that lets the analyst generate summarized reasons for drops or increases ob-

served at an aggregated level. This operator partly eliminates the need to manually

drill-down for such reasons. Sarawagi developed an information theoretic formula-

tion for expressing these reasons and designed a greedy and dynamic programming

algorithm for explaining differences. The operator also reduces information overload

by conveying only key reasons to the user, similar as applied in RM4. However, the

operator is not based on a causal model of explanation, as described in this thesis,

resulting in problems with defining causes and finding clear parameters for their al-

gorithms. Moreover, norm values in the approach of Sarawagi are not pre-computed

by a statistical model but are typically historical norm values. The approach taken in

Cariou et al. (2008) is closely related to Sarawagi’s. The authors developed a method,

based on statistical associations, to discover interesting dimensions to expand.

A recent group of related work is found in methods that couple data mining tech-

niques with OLAP databases to support various forms of discovery-driven analysis.

In Giacometti et al. (2008) and Giacometti et al. (2011), the authors present a sys-

tem for recommending OLAP database queries to the analyst. This system is based

on the harvesting of OLAP server’s log data with collaborative filtering techniques.
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In comparison, our method of explanation does not make use of such data and does

not induce a model from the data. The authors in Hsu and Li (2011), use clus-

tering methods and multi-dimensional scaling to determine similarity knowledge in

OLAP databases. They define similarity knowledge as hidden rules, similar reports,

or trends. The objective of similarity reduction (RM5) described in Section 4.6.5 is

quite similar. An in-depth comparison between the methods might be an interesting

topic for future research.

4.9 Conclusion

In this chapter, we first summarized the most important elements of the theory on

automated explanation in the domain of business and finance, in Section 4.2. Ad-

ditionally, it was shown that the generation of valid explanations is only possible

if certain constraints are satisfied. Important in the theory on explanation is the

computation of the influence measure, which embodies a form of ceteris paribus rea-

soning. Here it was shown that the interpretation of this measure is dependent on the

functional form of the function considered for explanation generation. Elements from

the theory are used in the development of three computerized methods for the expla-

nation of an exceptional cell value ∂y(c) = q in a cube C. The explanation methods

discussed are look-ahead explanation, top-down explanation, and greedy explanation.

Each method is used in a specific case.

In Section 4.3, an explanation method is discussed that can be used in the context

of a business model. The existing explanation methodology is extended with a proce-

dure to deal with cancelling-out effects in data sets. In this procedure hidden causes

are made visible by the use of function substitution. A multi-level look-ahead algo-

rithm, that applies function substitution, is proposed that visualizes hidden causes.

In Section 4.4, explanation generation in a system of solely drill-down equations is

discussed. Here a general top-down explanation method and a specific greedy expla-

nation method are developed. The top-down explanation method uses the method of

maximal explanation in a system of drill-down equations and shows that the theory

on automated explanation can indeed be applied in the OLAP context. The greedy

explanation method considers systems of equations that are composed out of purely
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additive drill-down equations, corresponding to application of the SUM() aggregation

function. In this method the transitivity property of the influence measure is used,

which simplifies explanation generation in such systems of equations. In the method

the concept of an aggregated table is applied, that might contain the influence val-

ues for all elements in the exceptional cell’s downset. In this table the causes for a

symptom are determined greedily in (parts of) the symptom’s downset, where first

the largest is determined, then the second largest cause, and so on. Finally, greedy

explanation in a system of average and maximum/minimum drill-down equations is

treated and expressions for the influence measure are developed. These systems of

drill-down do not exhibit the property of transitivity. However, an important result

is that influence values from elements in the exceptional cell’s downset can be sorted

and a greedy method can be used.

In Section 4.5, we discussed explanation generation in a hybrid system of equa-

tions, that contains both drill-down and business model equations. In the OLAP con-

text, computerized explanation is supported by these two internal structures. There-

fore, we developed a compound explanation method for finding significant causes in

these structures, based on the algorithms described in this chapter.

In addition, the explanation methods and algorithms use the concept of an expla-

nation tree, in which the main causes for a symptom are presented to the analyst. To

prevent an information overload, several reduction techniques are proposed in Section

4.6 to prune the tree. RM1 constructs parsimonious sets of causes. RM2 identifies

specific explanations. RM3 reduces the number of elements in the analysis path based

on the application of a reduction heuristic. RM4 is used in combination with greedy

explanation to produce a tree with the n largest causes. Finally, RM5 reduces sets of

explanations to a generic explanation that hold for a number of exceptional cells.

To ensure the correct working of the explanation methods the consistency con-

straint has to be satisfied. Reference values are consistent if they satisfy the same

equation as is given for the actual values. In Section 4.7, we discuss for each type

of normative model R under what conditions the consistency constraint is satisfied.

In particular, we describe a special class of additive ANOVA models that produce

consistent reference values, as opposed to the general class of statistical models that

do not produce such values.
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Sensitivity analysis

5.1 Introduction

In this chapter, we describe how sensitivity analysis can be implemented in a multi-

dimensional database. Sensitivity analysis in multi-dimensional databases is related

to the notion of comparative statics in economics. Where the central issue is to deter-

mine how changes in independent variables affect dependent variables in an economic

model. Comparative statics is defined as the comparison of two different equilibrium

states solutions, before and after a change in one of the independent variables, keeping

the other variables unchanged (Samuelson 1941). It is one of the primary analytical

methods used in economics, where it is commonly used, for example, in the study of

changes in supply and demand when analyzing a market. Instead of repeating the

phrase “keeping the other variables unchanged”, economists use the more compact

Latin equivalent ceteris paribus (c.p.). The underlying model for comparative statics

is a set of equatiuons that define the vector of dependent variables y1, y2, . . . , ym as

functions of the vector of independent variables x1, x2, . . . , xn, i.e.

y = fl(x), l = 1, 2, . . . ,m. (5.1)

This corresponds to a system of business model equations (Equation (2.22)), where

the function f might be non-linear, or a system of drill-down equations (Equation

(2.11)), where the function f is linear. In the latter situation we use the terms

non-base variables and base variables, as defined in Section 2.3, for dependent and

independent variables, respectively. To implement sensitivity analysis in OLAP, we

129
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define a new cube operator that supports the analyst in answering typical managerial

what-if questions, while navigating the cube. We distinguish between two types of

what-if questions:

• Questions related to a system of drill-down equations. For example, “How is the

profit in the year 2010 affected when the profit for a certain product is changed

with one percent in the first quarter in The Netherlands, c.p.?”

• Questions related to a system of business model equations. For example, “How

is the profit in the year 2010 for a certain product affected when its unit price

is changed with one additional unit in the sales model, c.p.?”

This chapter is structured as follows. In Section 5.2 we discuss sensitivity analysis

in systems that consist of purely drill-down equations. In Section 5.3 we elaborate

on sensitivity analysis in systems that consist of purely business model equations

and mixed systems of equations. In Section 5.4 we discuss related work. Finally, in

Section 5.5 we draw some conclusions.

5.2 Sensitivity analysis in a system of drill-down

equations

In this section we investigate the influence of a change in a measure value of a cell in

any cube, on a higher level value of the same measure in the aggregation lattice. Or

in formal notation, what is the effect of changing y(c′) to y(c′) + δ on a dependent

variable y(c) in the upset of c′. To solve this consider the lattice L′ with top cube

Cp = [i1, i2, . . . , in] and base cube Cq = [j1, j2, . . . , jn]. Notice that L′ is a sublattice

of L and L′ = {↓ c} ∩ {↑ c′}. The values of the measure y in the cube Cq are

denoted by x(c′i), and are called the base variables where i = 1, 2, . . . , |Cq|, and the

values of the measure y in {↑ Cq} are denoted by y(c), and are called the non-base

variables. We distinguish between the original values of a measure without change

xr(Cq) and yr(Cp), and the values of the changed measure: xa(Cq) and ya(Cp), where

xa(Cq) = xr(Cq) except for one cell c′i in the cube Cq, for which xa(c′i)− xr(c′i) = δ.

The following theorem shows how the values of y change in the lattice L′.
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Theorem 5.2.1. There is an unique additive drill-down measure ya(c) defined on all

cube cells in the sublattice L′ such that:

ya(c) = yr(c) + β(c) · (xa(c′i)− xr(c′i)), (5.2)

where:
β(c) = 1 if c ∈ {↑ c′i}, and
β(c) = 0 if c /∈ {↑ c′i}.

Proof. To show that ya(c) is additive it is sufficient to show that β(c)·(xa(c′i)−xr(c′i))

is additive, because the sum of additive measures is also additive and yr(c) is additive

by the consistency assumption. Hence, we must show that:

β(c) =
∑
q

β(R−1q (c)), (5.3)

where R−1q is the drill-down operation defined on a cell c in the lattice L. Now there

are two cases:

1. c ∈ {↑ c′i}, i.e. c is an ancestor of c′i. In that case c′i is also a descendant of

one of the cells in R−1q (c), c′i ∈ {↓ R−1q (c)}, which is a child of c in dimension

q. This property does not depend on dimension q. So both sides of Equation

(5.3) are equal to 1.

2. c /∈ {↑ c′i}, i.e. c is not an ancestor of c′i. In that case, c′i is also not a descendant

of one of the children of c. Hence, both sides of Equation (5.3) are zero. �

Notice that the drill-down measure ya(c) is unique. This follows from the general

proposition that every additive measure with given values on the base cube is unique

(Equation 2.14). This follows immediately from Theorem 2.3.1 (see Remark 2.3.1)

and the fact that L′ is a lattice of cubes.

In the case that c ∈ {↑ c′i}, we can rewrite Equation (5.2) as follows

ya(c) = yr(c) + inf(ya(c′), ya(c)). (5.4)

If y(c) is an additive drill-down measure then we use Equation (4.15) for the compu-

tation of inf(ya(c′i), y
a(c)) in Equation (5.4) and if the variable xr(c′) is changed with
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δ in sensitivity analysis then ya(c) is computed as ya(c) = yr(c) + (xa(c′) − xr(c′)).

This result follows immediately from Theorem 5.2.1.

Moreover, in the case that yr(c) is an average drill-down measure we use Equation

(4.18) for the computation of inf(ya(c′i), y
a(c)) in Equation (5.4) and if the variable

xr(c′) is changed with δ in sensitivity analysis then ya(c) is computed as ya(c) =

yr(c) + 1
|Cq |(x

a(c′) − xr(c′)), where Cq is the context cube under consideration. This

result is not proven here but the proof is similar to the proof of Theorem 5.2.1, with

the difference that the RHS of the drill-down equation is divided by the number of

cells in the context cube.

Example 5.2.1. Here we present a numeric example of a what-if analysis in the cube

C = Store × Products for the measure sales, aggregated by the average function.

The data of the cube is depicted in Table 5.1. We want to analyse a change δ in

the cell (A,P1) on its upset {↑ (A,P1)}. The reference value of the cell is given by

salesr(A,P1) = 1 and the actual value is given by salesa(A,P1) = 1 + δ. By applying

Equation (5.4) we compute the effect of this change on {↑ (A,P1)}; these effects are

given by

salesa(All, P1) = salesr(All, P1) +
1
3
δ where |R+1

Stores(C)| = 3,

salesa(A,All) = salesr(A,All) + 1
4
δ where |R+1

Products(C)| = 4,

salesa(All,All) = salesr(All,All) + 1
12
δ where |C| = 12.

Table 5.1: Sensitivity analysis in the example cube Store × Products for the average
drill-down measure sales. Here the value of the cell (A,P1) is changed with δ and this
change is propagated in the cell’s upset.

AVG(sales) Stores

Products

A B C All
P1 1 + δ 2 3 2 + 1

3
δ

P2 4 5 6 5
P3 7 8 9 8
P4 10 11 12 11
All 5.5 + 1

4
δ 6.5 7.5 6.5 + 1

12
δ
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Remark 5.2.1. The subsystem of drill-down equations that corresponds with {↑ c′} has
an unique solution, after a change in y(c′) with some δ, as a result of Theorem 5.2.1.

However, the complete system of equations becomes inconsistent because Equation

2.12 does not hold in that case:

ymax1max2...maxn(c) + δ(c′) =
∑

cn∈R−maxn
n ◦...◦R−max2

2 ◦R−max1
1 (c)

y00...0(cn).

In other words, when the change in what-if analysis is not induced by a variable in the

base cube, but by a (non-base) variable on some intermediate level in the lattice L,

the complete system of equations will become inconsistent. For analysis restricted to

{↑ c′} this does not matter, however analysis in the complete system is obviously not

useful anymore. The inconsistencies in the complete system of drill-down equations,

can be corrected by a straightforward procedure, that repairs the OLAP database

(Caron and Daniels 2008).

5.3 Sensitivity analysis in a system of business

equations

In this section we discuss managerial what-if questions related to a system of business

model equations and a mixed system of drill-down and business model equations.

Multiple related measures in the business model and associated dimensions, result in

a mixed, often non-linear, system of equations.

Example 5.3.1. For example, consider Table 5.2 with the equations of Example 2.1.1.

The equations in Table 5.2 are isolated from a larger system of equations, depicted

Table 5.2: Subsystem of business model and drill-down equations derived from a
multi-dimensional financial database.
1. Rev.(2005) = Rev.(2005.Q1) + Rev.(2005.Q2) + Rev.(2005.Q3) + Rev.(2005.Q4)
2. Rev.(2005) = Vol.(2005) × Unit Pr.(2005)
3. Rev.(2005.Q2) = Vol.(2005.Q2) × Unit Pr.(2005.Q2)
4. Vol.(2005) = Vol.(2005.Q1) + Vol.(2005.Q2) + Vol.(2005.Q3) + Vol.(2005.Q4)
5. Unit Pr.(2005) = ((Vol.(*.Q1) × Unit Pr.(*.Q1)) + (Vol.(*.Q2) × Unit Pr.(*.Q2)) +

(Vol.(*.Q3) × Unit Pr.(*.Q3)) + (Vol.(*.Q4) × Unit Pr.(*.Q4))) / Unit Pr.(*)
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in Figure D.1 in Appendix D, Section D.2. In shorthand notation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−y1 + x1 + y2 + x2 + x3 = 0

−y1 + y3 × y4 = 0

−y2 + x4 × x5 = 0

−y3 + x6 + x4 + x7 + x8 = 0

−y4 + ((x6 × x9) + (x4 × x5) + (x7 × x10) + (x8 × x11))/y3 = 0,

(5.5)

where yi with i = 1, 2, 3, 4 are the dependent variables and xi with i = 1, 2, . . . , 11

are the independent variables. The system of equations in (5.5) are represented as

a business model graph (see Section 2.3.2) in Figure 5.1. In this system we want to

Figure 5.1: Graph representation of the implicit system of equations.

change an independent variable xi, e.g. x4 (= Volume(2005.Q2)) and/or x5 (= Unit

Price(2005.Q2)), and study the impact on its upset, in particular, the dependent root

variable y1 (= Revenues(2005)). Notice that (5.5) is overdetermined, because we have

4 independent variables and 5 equations.

In general, for a mixed system of equations

• the equations are linear and non-linear, and

• the system of equations is overdetermined.
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A system of solely drill-down equations is also overdetermined in the case of multiple

dimensions, as shown in Appendix D. Equation (5.5) can be written as

fl(y,x) = 0. (5.6)

The linearization of (5.6) in a neighborhood of a solution (y0, x0) reads:

A1y + A2x = 0. (5.7)

The matrix A1 is the l ×m coefficient submatrix for dependent variables and A2 is

the l×n coefficient submatrix for independent variables. Here the matrix of the first

derivatives of f with respect to y is represented by A1 = Dyf(y,x) and the matrix of

first derivatives of f with respect to x is represented by A2 = Dxf(y,x).

With (5.7) we can examine the impact of a change in one or more independent

variables c.p., given by Δx, on the dependent variables, given by Δy, where equa-

tion (5.6) has to be satisfied. In the next section, we investigate the conditions for

consistency and solvability of (5.7), which is a necessary condition for solvability of

(5.6).

5.3.1 Conditions for solvability

A necessary condition for solvability in a system of linear equations is the rank cri-

terium. A system of linear equations (5.7), of A1y +A2x = 0, is solvable if and only

if rank(A1| − A2x) = rank(A1). The proof of this theorem is, for example, given in

Schott (1997). In words, the rank criterium says that the vector −A2x must be in

the column space (range) of A1 for the system to be solvable.

To investigate the solvability of (5.6), we assume that

(y0,x0) = (y01, y
0
2, . . . , y

0
m, x

0
1, x

0
2, . . . , x

0
n)

is a solution of (5.6). We substitute this solution in the derivative matrices A1 and A2

to obtain the linearized matrix [A1A2] at the solution (y0,x0). The linearized system

of equations A1Δy+A2Δx = 0 is solvable if and only if rank(A1) = rank(A1|−A2Δx).

Similarly, the linearized system of equations is solvable for an independent variable

∂xi, if and only if, rank(A1) = rank(A1|column xi from A2). A column vector xi of



136 Sensitivity analysis in a system of business equations

the submatrix A2 is represented by a2(i). Accordingly, the rank criterium can be used

to determine whether an independent variable ∂xi qualifies for what-if analysis in a

system of business model equations. However, as we shall see in the next section, this

criterium is a necessary but not sufficient condition for the solvability of a non-linear

system of equations. (5.7), When the submatrix A1 is nonsingular then the solution

of A1Δy + A2Δx = 0 is unique and given by

Δy = −A−11 A2Δx.

Notice that the rank criterium is a necessary but not sufficient condition for the

solvability of a non-linear system of equations, as shown in the following example.

Example 5.3.2. Consider the system of equations{
−y + x3 + x = 0

−y + x2 + x = 0.
(5.8)

Observe that the point (0, 0) is a solution to this system of equations. Define f(y, x) =

(−y + x3 + x,−y + x2 + x). The Jacobian of f is

A =

(
−1 3x2 + 1

−1 2x+ 1

)
.

For x = 0:

A = [A1 A2] =

(
−1 1

−1 1

)
.

The system satisfies the rank criterium, because rank(A1|A2) = rank(A1) = 1. How-

ever, the implicit function theorem cannot be applied because the submatrix A1 is

non-square. However, A1Δy + A2Δx = 0 is solvable for all Δx but the non-linear

system represented by (5.8) is not solvable for x = 0.

Practically, this means that in such models the number of equations must be equal

to the number of dependent variables to produce a square submatrix A1 (l = m). For

example, the business model in Table 1.1 (see Chapter 1) satisfies this condition,

because it has 5 business equations and 5 dependent variables.

In the case that what-if analysis is performed in a mixed system of equations,

the number of equations is larger than the number of dependent variables, thus l >
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m, because it contains an OLAP subsystem. In such systems the implicit function

theorem cannot be applied because the submatrix A1 is non-square. However, in some

cases it is still possible to derive unique solutions if certain independent variables are

changed. This is shown in the example described in Section 5.3.2.

Now suppose that we are given an overdetermined system of equations as in (5.6)

and a solution (y0,x0) to this system such that all the equations are satisfied. The

first derivatives of the equations can be written in matrix form as in (5.7). If the

rank criterium for consistency holds for a certain independent variable xi, consid-

ered for what-if analysis, then the solution f(y0,x0) = 0 is filled in Equation (5.7).

Subsequently,

α1 · eq. 1 + α2 · eq. 2 + . . .+ αl · eq. l = 0, (5.9)

holds if all the αi’s exist. If the αi’s exist we remove (l−m) dependent equations from

the system of equations and derive a (m×m) submatrix A1. If the remaining system

of equations in A1 is nonsingular the implicit function theorem can be applied and

the αi’s determined. In that case the removed equations are satisfied too, because

Equation (5.9) holds and the general solution for xi can be determined.

5.3.2 What-if analysis example

In this example we want to change an independent variable xi and study the impact

on elements in its upset. The Jacobian of the system of equations in (5.5) is

A = [A1 A2] =⎛
⎜⎜⎜⎜⎝
−1 1 0 0 1 1 1 0 0 0 0 0 0 0 0
−1 0 y4 y3 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 x5 x4 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 0 1 1 1 0 0 0
0 0 )∗ −1 0 0 0 x5

y3

x4

y3

x9

y3

x10

y3

x11

y3

x6

y3

x7

y3

x8

y3

⎞
⎟⎟⎟⎟⎠ .

)∗ = −x6x9+x4x5+x7x10+x8x11

(y3)2

Observe that the vector

(y0 x0) = (48 16 15 3.2|13 12 7 4 4 6 3 2 2.75 3 3.25),
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is a solution to the system of equations. The Jacobian at (x0, y0) is

A0 = [A1 A2] =⎛
⎜⎜⎜⎜⎝
−1 1 0 0 1 1 1 0 0 0 0 0 0 0 0
−1 0 3.2 15 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 4 4 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 0 1 1 1 0 0 0
0 0 − 48

225
−1 0 0 0 4

15
4
15

2.75
15

3
15

3.25
15

6
15

3
15

2
15

⎞
⎟⎟⎟⎟⎠ .

The rank criterium for solvability in this system is satisfied for the variables x4 (=

Volume(2005.Q2)) and x5 (= Unit Price(2005.Q2)): rank(A1|a2(4)) = rank(A1) = 4

and rank(A1|a2(5)) =rank(A1) = 4. It can easily be verified that the rank criterium

is not satisfied for the other independent variables. For example, for variable x1

it can be concluded that rank(A1|a2(1)) > rank(A1). Therefore, the only candidate

independent variables for what-if analysis in this example are x4 and x5.

As we saw, the rank criterium is a necessary but not sufficient condition for solv-

ability. We cannot apply the implicit function theorem to verify solvability here,

because the submatrix A1 is non-square (5 × 4). But in this case we may eliminate

one of the equations because we can find αi such that:

α1 · eq. 1 + α2 · eq. 2 + α3 · eq. 3 + α4 · eq. 4 + α5 · eq. 5 = 0. (5.10)

These αi’s are given by ⎛
⎜⎜⎜⎜⎝

α1

α2

α3

α4

α5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1
1

−1
0
y3

⎞
⎟⎟⎟⎟⎠ .

Now we proceed as follows. In the system of equations in (5.5) all independent

variables are replaced by the solution (y0,x0) except the independent variables x4

and x5, that are under consideration for what-if analysis. From the original system

of equations, one dependent equation is removed and we derive a reduced system of

equations, where the matrix A1 is square. Removing eq. 2 yields

f(y1, y2, y3, y4, x4, x5) =

⎧⎪⎪⎨
⎪⎪⎩
−y1 + 32 + y2 = 0
−y2 + x4x5 = 0
−y3 + 11 + x4 = 0
−y4 + (32 + x4x5)/y3 = 0.

(5.11)
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(y0,x0) = (48, 16, 15, 3.2, 4, 4) is a solution of (5.11). The 4× 4 derivative submatrix

A1 of f with respect to y in (48, 16, 15, 3.2, 4, 4) is

Dyf(48, 16, 15, 3.2, 4, 4) =

⎛
⎜⎜⎝
−1 1 0 0
0 −1 0 0
0 0 −1 0
0 0 − 48

225
−1

⎞
⎟⎟⎠ = A1.

It can easily be verified that

A1A
−1
1 =

⎛
⎜⎜⎝
−1 1 0 0
0 −1 0 0
0 0 −1 0
0 0 − 48

225
−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 −1 0 0
0 −1 0 0
0 0 −1 0
0 0 48

225
−1

⎞
⎟⎟⎠ = I4.

By the implicit function theorem we can find continuous differentiable functions

ϕi(x4, x5) : B → R, where B = Br(48, 16, 15, 3.2, 4, 4), such that⎧⎪⎪⎨
⎪⎪⎩

y1 = ϕ1(x4, x5)
y2 = ϕ2(x4, x5)
y3 = ϕ3(x4, x5)
y4 = ϕ4(x4, x5),

is a solution of the system of equations (5.11). Moreover, also the removed equation

−y1 + y3y4 = 0 (eq. 2) is satisfied because of (5.10). Computation gives:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1 = 32 + x4x5

y1 = (11 + x4)(
32+x4x5

11+x4
) = 32 + x4x5

y2 = x4x5

y3 = 11 + x4

y4 =
32+x4x5

11+x4
.

5.3.3 Alternative approach

In this section we propose an alternative approach for what-if analysis in a mixed

system of equations as in (5.1). Suppose we have a system of equations as represented

in (4.7) and (4.8). The indirect influence of the variable zj on the root variable ∂y in

M is defined as:

inf(zj, y) = y′ − yr, (5.12)

where y′ is derived by means of value propagation of zaj in {↑ zj} in the system of

equations where all other variables are evaluated at their reference values. In the
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value propagation process x′i = gi(z
r
1, . . . , z

a
j , . . . , z

r
m) and y′ = f(x1, . . . , x

′
i, . . . , xn)

are determined. In the case that the functions f and the gi’s in the system of equations

are all smooth and the difference ∂y is small, the influence of a variable zj on the root

y can be approximated by:

inf(zj, y) =

(
∂y

∂zj

)
r

×Δzj, (5.13)

where ∂y
∂zj

is computed by applying the chain rule for partial differentiation, and is

given by ∂y
∂zj

= ∂y
∂xi

∂xi

∂zj
.

A necessary condition for solvability is

inf(zj, y)path A = inf(zj, y)path B, (5.14)

where analysis path A and analysis path B are paths in the upset of the variable

{↑ zi}, and y ∈ {↑ zi}. In the alternative approach this condition is used to single

out systems of equations from sensitivity analysis that are not solvable. Besides if

Equation (5.14) holds for all paths from zj to y, i.e. it gives the same solution, then

the system is uniquely solvable.

In the remainder of this section we present two typical examples, taken from the

multi-dimensional sales database. In the first example the system is unsolvable and

the second the system is uniquely solvable.

Example 5.3.3. In this example we illustrate what-if analysis in a mixed, non-linear,

system of equations derived from a multi-dimensional sales database. Consider the

following (partial) system of business model and drill-down equations in Table 5.3,

derived from Figure D.2 in Appendix D, Section D.2.

Table 5.3: Partial system of sales model and drill-down equations.
1. Rev.(2005)= Rev.(2005.Q1) + Rev.(2005.Q2) + Rev.(2005.Q3) + Rev.(2005.Q4)
2. Rev.(2005) = Vol.(2005) × Unit Price(2005)
3. Rev.(2005.Q2) = Vol.(2005.Q2) × Unit Price(2005.Q2)
4. Vol.(2005) = Vol.(2005.Q1) + Vol.(2005.Q2) + Vol.(2005.Q3) + Vol.(2005.Q4)

In notation: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1 = x1 + y2 + x2 + x3

y1 = y3 × x4

y2 = x5 × x6

y3 = x7 + x5 + x8 + x9.

(5.15)
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In Figure 5.2, this system of equations is represented in a graph. A solution is

Figure 5.2: Graph of the system of non-linear equations.

(y0,x0) = (48 16 15|13 12 7 3.2 4 4 6 3 2).

We want to analyse the effect of a change in the variable x5 on the root variable y1

using Equation (5.13). There are two paths from x5 to y1, path A via the variable y2

with equations 1 and 3, and path B via the variable y3 with equations 2 and 4. We

compute,

inf(x5, y1)path A = ∂y1
∂x5
×Δx5

= ∂y1
∂y2

∂y2
∂x5
×Δx5

= 1 · x6 ×Δx5

= x6 ×Δx5

and
inf(x5, y1)path B = ∂y1

∂x5
×Δx5

= ∂y1
∂y3

∂y3
∂x5
×Δx5

= x4 · 1×Δx5

= x4 ×Δx5.

From this we can conclude that inf(x5, y1)path A = inf(x5, y1)path B and therefore Equa-

tion (5.14) does not hold. In other words, changing the variable x5 is not allowed,

because this will make the system insolvable.
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Example 5.3.4. Consider again (5.5). The graph of the system of equations is given

in Figure 5.1. In the system of equations we want to analyse the impact of a change

in the variable x4 on the root variable y1 with Equation (5.13). There are two

paths from x4 to y1, path A via the variable y2 with equations 1 and 3 denoted

by y1 = f1(x1, f3(x4, x5), x2, x3), and path B via the variables y3 and y4 with equa-

tions 2, 4, and 5, denoted by y1 = f2(f4(x4, x6, x7, x8), f5(x4, x5, x6, x7, x8, x9, x10, x11),

f4(x4, x6, x7, x8)). First we compute,

inf(x4, y1)path A = ∂y1
∂x4
×Δx4

= ∂y1
∂y2

∂y2
∂x4
×Δx4

= 1 · x5 ×Δx4

= x5 ×Δx4

and then we compute

inf(x4, y1)path B = ∂y1
∂x4
×Δx4

= (∂y1
∂y3

∂y3
∂x4

+ ∂y1
∂y4

∂y4
∂x4

+ ∂y1
∂y4

∂y4
∂y3

∂y3
∂x4

)×Δx4

= (1 · y4 + y3 · x5

y3
+ 1 · y3 · −(x6x9+x4x5+x7x10+x8x11

(y3)2
))×Δx4

= (y4 + x5 − y4)×Δx4

= x5 ×Δx4.

From this we can conclude that inf(x4, y1)path A = inf(x4, y1)path B and therefore Equa-

tion (5.14) holds. In addition, Equation (5.14) holds for all paths from x4 to y1,

therefore the system remains solvable if x4 is changed.

5.4 Related work

The variables, parameter values, and assumptions of any business or economic model

are subject to change. Sensitivity analysis, generally defined, is the investigation of

these potential changes and their impacts on conclusions to be drawn from the model

(e.g. Baird (1990)). There are many possible applications of sensitivity analysis,

described here within the categories of decision support, communication, increased

understanding or quantification of the system, and model development (Pannell 1997).

There is a very large literature on procedures and techniques for sensitivity analy-

sis (Clemson et al. 1995). Two general classes of techniques for sensitivity analysis
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are the implicit function theorem (Currier 2000; Heckman 2000) and monotone com-

parative statics (Milgrom and Shannon 1994). These are methods for characterizing

whether an increase in a parameter causes the dependent variable to increase or de-

crease. Historically the implicit function theorem was used for this purpose and the

implicit function theorem not only tells you whether the dependent variable increases

or decreases but also the magnitude of change. In contrast, monotone comparative

statics tells you only “up” or “down”, i.e., it gives an ordinal rather than cardinal

answer. In our research, we focused solely on quantitative what-if analysis within the

multi-dimensional database.

To the best of our knowledge, Balmin et al. (2000) and Lakshmanan et al. (2007)

are the only published research works that address sensitivity analysis in OLAP

databases in a significant way. In Balmin et al. (2000), the authors have devel-

oped the SESAME system for the processing of hypothetical queries. For this system

query algebra operators are proposed that are suitable for spreadsheet-style what-if

computations. In the system hypothetical queries are modeled as a list of hypothet-

ical modifications on the data in the fact table. A shortcoming of their approach is

that it lacks a good mathematical underpinning, to decide whether a certain change

is allowed in the model or not, as opposed to our approach. In Lakshmanan et al.

(2007), a different perspective is taken on what-if analysis. They focus on what-if

analysis related to changes in dimensions and their hierarchical structure. However,

our focus is on data-driven what-if scenarios, as opposed to structural ones.

In many OLAP software products, sensitivity analysis is not possible at the mo-

ment. If one wants to do sensitivity analysis in these products one has to copy the

data to a reporting environment, for example MS Excel, to compute manually the im-

pact of changes in certain cells of the data cube. An exception is the software product

Clickview (Cliqview Corporation 2010), where a fixed change in a base variable can

be induced in a system of additive drill-down measures, to determine its impact on

non-base variables. The difference with our approach is that we can induce variable

changes in systems of additive and average drill-down measures and under certain

conditions in non-linear systems of business equations.
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5.5 Conclusion

In this chapter, we stated the theoretical underpinnings under which sensitivity anal-

ysis is allowed in multi-dimensional databases. We also discussed some theoretical

issues and procedures related to sensitivity analysis in OLAP databases.

For sensitivity analysis in systems of additive drill-down measures we proved The-

orem 5.2.1, and showed that there is an unique additive drill-down measure ya(c)

defined on all cubes of the aggregation lattice. This theorem is the basis for sen-

sitivity analysis here, where a change in some base cell in the lattice is propagated

to all descendants in its upset. For the average drill-down measure a similar expres-

sion is determined. Moreover, sensitivity analysis might cause the multi-dimensional

database to become corrupted, if the analysis is not carried out on cells in the base

cube. To overcome this problem we proposed a correction procedure.

For sensitivity analysis in mixed systems of equations we introduced a matrix

notation and we discussed the conditions for solvability. Because mixed systems are

typically overdetermined the implicit function theorem cannot be applied. Therefore,

we proposed a method to reduce the number of equations in the system and apply the

implicit function theorem on a subsystem. Finally, an alternative method for what-if

analysis in such systems is proposed.



Chapter 6

Case studies and Software
implementation

6.1 Introduction

In this chapter, we present a number of case studies, to apply the methods/theory

discussed in the previous chapters. In the case studies, typical business questions

are addressed that emerge naturally when an analyst or decision-maker is analyzing a

multi-dimensional business database. For example, business questions when analyzing

a sales cube might be:

1. “Which products in the cube have good sales figures and which products have

not?” (exception identification)

2. “What are the most important causes for the drop in profit in Spain 2008.Q1

compared to 2007.Q1?” (explanation)

3. “How is the profit on the aggregated year level affected when the revenues

for product P1 are changed with 10% in the first quarter in Spain (c.p.)?”

(sensitivity analysis)

Exception identification, explanation, and sensitivity analysis in the case studies is

carried out mostly with a prototype software application.

The remainder of this chapter is organised as follows. In Section 6.2 (Case 1), the

look-ahead explanation method is illustrated in a case study on interfirm comparison

145
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with financial data about Dutch retail companies collected at Statistics Netherlands.

This section is mainly based on the publications Daniels and Caron (2007) and Daniels

and Caron (2009). Here explanation is based on solely business model equations and

the reference values are obtained from an extra-organizational normative model and

given by branch averages. In Sections 6.3 (Case 2a) and 6.4 (Case 2b), top-down and

greedy explanation are illustrated in a case study analysing multi-dimensional sales

and financial data. In these cases multiple analyses are carried out to show different

aspects of our explanation methodology. Exceptional cell values in some cube C are

identified first with statistical and managerial normative models. Subsequently, these

exceptional cells are explained with top-down and greedy explanation. The generated

explanation trees are pruned with various reduction methods. Parts of this section are

published in Caron and Daniels (2012) and Caron and Daniels (2013). In Section 6.5

(Case 3), the top-down method for explanation is used in a case study on the analysis

of real-life vehicle crime data. The research was executed for the PROTECT project

(PROTECT 2006). In Section 6.6 (Case 4), sensitivity analysis is illustrated in a case

study regarding supermarket sales data. What-if analysis is used in a system of drill-

down and a system of business model equations. Parts of this section are published in

Caron and Daniels (2010). If applicable, we globally describe the software applied in

the sections. Finally, we draw conclusions in Section 6.7. The data used in the case

studies is available in Appendix B, Appendix C, or is downloadable via the website

http://www.emielcaron.nl/dissertation.html.

6.2 Case 1: Interfirm comparison at

Statistics Netherlands

Interfirm comparison (IFC) is the standard way of measuring and comparing of a

company’s performance against its competitors or historic averages. By comparing

the financial variables of a company with those of other companies in the same branch,

the company can benchmark its performance against objective standards and gain

insight into the weaknesses and strengths of the company. At present, the diagnostic

process for IFC is mostly carried out manually by bankers, accountants and business

consultants. The analyst has to explore large data sets in the domain of business
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and finance to spot firms that expose exceptional behaviour compared to some norm

behaviour. After abnormal behaviour is detected the analyst wants to find the causes,

i.e. the set of financial variables responsible for the exceptional outcome. Traditional

accounting methods’s are variance decomposition and analysis of ratio’s in a Du

Pont model (Fridson and Alvarez 2002). Today’s information systems for automated

financial diagnosis and IFC have limited explanation or diagnostic capabilities. This

functionality can be extended with the explanation formalism (see expression (4.1)),

which supports the work of human analysts in diagnostic processes. In this case study

the diagnostic process is largely automated and implemented in a computer program

to support decision-makers. It is applicable to all kinds of underlying business models

consisting of identities and behavioural equations. The Du Pont schema and the

multi-dimensional business databases are special cases.

The following extensions are discussed. Firstly, a method for symptom detection is

presented that takes into account the probability distribution of the business variable

under consideration for diagnosis. Secondly, we apply the explanation methodology

with look-ahead functionality (see Section 4.3) to deal with possible cancelling-out

effects in the data set under consideration. These effects would be missed with the

method of maximal explanation (see Section 4.2.6).

The method for diagnosis was originally implemented in PROLOG (Feelders

1993). This type of implementation has some advantages in terms of knowledge

representation. However it also has some disadvantages in terms of applicability in

an office environment and presentation of the output. Here we implemented the

explanation method with look-ahead, as described in Algorithm 4, in MS Excel in

combination with Visual Basic (VB).

6.2.1 Introduction

The business model M and data for IFC are obtained from Statistics Netherlands

(2009)1. Statistics Netherlands is responsible for collecting, processing and publishing

statistics to be used in practice, by policymakers and for scientific research. The

business model M is derived from the production statistics for companies in the

1We thank Jeffrey Hoogland for his support at Statistics Netherlands.
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Dutch retail and wholesale trade sectors. We use production statistics from the years

2001 and 2002. For both years, data sets with more than 5000 retail and wholesale

companies are classified into branch sections. The model relations read:

1. r1 = r2 + r3 + r4 + r5

2. r2 = r6 − r7

3. r3 = r8 − r9

4. r4 = r10 − r11

5. r5 = r12 − r13

6. r6 = r14 + r15

7. r7 = r23 + r24 + r25 + r26 + r27 + r28 + r29 + r30 + r31 + r32 + r33 + r34

8. r14 = r16 + r17 + r18 + r19 + r20

9. r15 = r21 + r22

10. r23 = r35 + r36

11. r24 = r37 + r38 + r39 + r40

12. r25 = r41 + r42 + r43 + r44

13. r26 = r45 + r46 + r47 + r48 + r49 + r50

14. r27 = r51 + r52 + r53

15. r28 = r54 + r55 + r56 + r57 + r58 + r59 + r60

16. r29 = r61 + r62 + r63

17. r30 = r64 + r65 + r66 + r67 + r68

18. r32 = r69 + r70 + r71 + r72 + r73 + r74

19. r33 = r75 + r76 + r77 + r78 + r79 + r80 + r81.

In short, three types of business equations are identified with depth d = 4 in M :

result (eq. 1 through 5), revenue (eq. 6 through 8), and cost (eq. 9 through 19)

equations. The variable (r1) in the root equation gives the company’s total result

before taxation. This variable is split up into four types of results namely: total

operating results (r2), total financial results (r3), total results allowances (r4), and

total extraordinary results (r5).

A result variable is the difference between a revenues component and a cost com-

ponent. Examples of revenues components are total operating revenues (r6), financial
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revenues (r8), deductions from allowances (r10) and extraordinary profits (r12). Ex-

amples of cost components are total operating costs (r7), financial expenses (r9),

additions to allowances (r11) and extraordinary losses (r13). Here the variable finan-

cial revenues is the sum of interests received, revenues from participations, payments

of dividends, and profits from investments and other financial gains. Allowances (r11)

are the sum of internal provident funds, such as initial expenses, funds for business

restructuring and maintenance. Furthermore, extraordinary profits are all gains that

do not result from normal business management, like profits made on disposal of sub-

sidiaries, fixed assets, and in foreign business units. Because Statistics Netherlands is

interested in the structure of the operating revenues and costs, these variables are im-

portant in their statistics. Therefore, these variables are decomposed into lower level

revenues and costs variables. In Appendix B the complete list of variables and their

description is given. Here M consists purely of additive and difference relations. Our

explanation methodology can also handle non-linear relations as shown in Example

4.2.1, if a consistent chain of reference objects is formed.

For the diagnosis of business performance we have to construct appropriate refer-

ence objects. Several factors that influence the business diagnosis results have to be

taken into account, such as the Standard Industry Classification (SIC) for the retail

and wholesale industries, and the size of the company. Therefore, computerized se-

lections on the data set are made, such as supermarkets, liquor stores, do-it-yourself

shops, etc. Within these subsets we make a further selection on the size class (small,

medium, or large) of the companies. The company size classes are based on the num-

ber of employees of the firm in FTE’s (full-time employees). The intervals for the

different size classes are small (1 − 9 employees), medium (10 − 99 employees) and

large (≥ 100 employees). In this way homogeneous subsets of the data for analysis are

constructed. In addition, for the analysis data is normalized by dividing all variables

in M by the total number of FTEs of each individual company.

The normative model R for IFC, the industry average, is computed by taking

the mean value of all the companies in the selected normalized sample of a specific

year for all variables (r1 through r81) in the business model. Industry averages are
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computed as

rrp(Industry average, Size class,Year) =
1

N

N∑
i=1

rap(Firmi, Size class,Year),

whereN is the number of firms in the sample under consideration, and p = 1, 2, . . . , 81.

Here a consistent chain of industry averages is obtained because the equations in the

business model are summarizations (See Section 4.7.2 for more detail). For example:

rr1(Industry average, Size class,Year) =
5∑

p=2

rrp(Industry average, Size class,Year).

Moreover, from the production statistics it is sometimes also possible to make historic

comparisons, where R is selected to be a historical normative model. In that case,

the reference objects for the business model variables are the values in one or more

previous time periods.

6.2.2 Exception identification

Analysis is performed on a specific homogeneous sample selected out of the original

data set with production statistics for the year 2001. The sample consists of 69 fashion

shops with class size “medium”. Exception identification in the data set starts with

the variable total result before taxation (r1) on the root level of the business model.

This variable has a normal distribution. This was tested with the Shapiro-Wilks

normality test with mean 11.30 (the industry average) and standard deviation 28.85.

The population parameters of the distribution are estimated. The central question

in the problem identification is: “Which firms deviate significantly from their branch

average in 2001?” The symptom detection module of the diagnosis application iden-

tifies 9 firms that are higher or lower than the specified threshold value in the sample

data set. Table 6.1 provides a full specification of the normative model. Here we

select δ = 1.645 corresponding to a probability of 95% in the standard normal dis-

tribution. With these test specifications we derive the following distribution of the

number of firms over the three symptom types: 5 firms with symptom high, 60 firms

with symptom normal and 4 firms with symptom low. For one of the fashion shops

in the sample – the ABC-company – we present complete diagnostics. Moreover, the
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Table 6.1: Specification of the normative model for the diagnostic example.

Slot name Slot entry

Variable Total result before taxation (r1)
Norm object Industry average (2001)
Industry Fashion shops
Size class (N = 69 firms) Medium
Distribution Normal distribution r1 ∼ N(11.30, 832.17)
Threshold α = .05 (two one-tailed tests)

data is anonimized because Statistics Netherlands does not allow exposure of data

on the micro level. The actual data for the company is ra1(ABC-company, Medium,

2001)= 61.75 and the reference data is rr1(Industry average(Fashion shops), Medium,

2001)= 11.30. For the ABC-company the detected symptom is “high” when compar-

ing the actual result before taxation of the company with the branch average, because

the one-tailed test (61.75 − 11.30)/28.85 > 1.645 is above the threshold value. Fur-

thermore, the relative difference between the actual value and industry average for r1

is (61.75 − 11.30)/11.30 = 4.46. Thus, the ABC-company is doing particularly well

compared to its industry average, more than 4 times as good.

6.2.3 Explanation generation

We analyse the symptom

〈ABC-company(2001), ∂r1 = high, branch average(2001)〉

using the multi-level explanation method configured for one-step look-ahead, i.e. Al-

gorithm 4 (see Section 4.3.2) is executed with q = 1. In other words, the following

business question is addressed:

“Why is total result before taxation (r1) relatively high for the ABC-company

compared with its branch average?”

Here the selected reduction measure is RM1 (see Section 4.6), where T+ = T− =

0.85 is taken. The explanation generation process starts with the root equation
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in M . In Table 6.2 a comparison is made between the actual total result before

taxation of the ABC-company and the branch average in the year 2001 for equation

M0;1. The equation r1 = r2 + r3 + r4 + r5 holds for both actual and reference

Table 6.2: Actual and norm values for M0;1.

Actual Norm inf(xi, y) Difference (%)

r1 61.75 11.30 446.46
r2 60.42 14.79 45.62 308.52
r3 1.33 -2.55 3.88 -152.16
r4 0.00 -0.15 0.15 -100.00
r5 0.00 -0.79 0.79 -100.00

values and we infer that Cbp = {r2} and Cap = ∅. The variable r2 (total operating

results) explains 90.44% of the difference ∂r1, and is therefore identified as the single

parsimonious contributing cause because its value exceeds the fraction. Therefore,

the result variables r3, r4 and r5 are filtered out of the explanation because their

influences are considered to be too small. However, instead of proceeding with purely

explanation of the parsimonious contributing causes as in explanation without look-

ahead, the extended method looks for potential cancelling-out effects in the analysis

phase. The look-ahead procedure takes into account the effects of all variables on

level 2 of M , i.e. the effects of the RHS-variables in equations 2, 3, 4 and 5 in M .

This is illustrated graphically in the partial explanation tree depicted in Figure 6.1,

where the curved black arrows “step over” the intermediate nodes on level 1, and

point at the RHS variables of equation 2, 3, 4 and 5. In this figure, the straight

black line indicates the identified parsimonious contributing cause, the straight grey

lines indicate possible contributing causes and the dashed grey lines indicate possible

counteracting causes.

In the analysis phase, function substitution is applied to find parsimonious causes,

which were missed in the local explanation of differences. Equations 2 through 5

are substituted into the root equation and the following equation for explanation

generation is derived:

M0;2: r1 = (r6 − r7) + (r8 − r9) + (r10 − r11) + (r12 − r13).
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Figure 6.1: Illustration of one-step look-ahead in the analysis phase of the algorithm.

This equation is added to the set of business model equations. Notice that the

specification of the event to explain ∂r1 remains the same, but now equation M0;2 is

applied to explain the difference. Table 6.3 summarizes the results of our extended

model of ABC-company’s relatively high total result before taxation.

Table 6.3: Actual and norm values for M0;2.

Actual Norm inf(xi, y) Difference (%)

r1 61.75 11.30 466.31
r6 329.50 308.64 20.86 6.76
r7 269.09 293.84 24.76 -8.42
r8 11.17 1.84 9.33 507.07
r9 9.83 4.39 -5.44 123.92
r10 0.00 0.16 0.16 -100.00
r11 0.00 0.01 -0.01 -100.00
r12 0.00 0.31 -0.31 -100.00
r13 0.00 1.10 1.10 -100.00

From the data in Table 6.3 it follows that Cbp = {r6, r7, r8} and Cap = {r9}. We

now observe that the effects of causes r8 and r9 are significant at the specified fractions

for parsimonious sets. These causes are identified as hidden causes, because r8 ∈
Cbp(r1) and r9 ∈ Cap(r1). However, their parent variable r3 /∈ Cbp(r1) according to

Definitions 4.3 and 4.4 on page 94. These hidden causes would have been missed in an

analysis without look-ahead, i.e. with maximal explanation. Figure 6.2.3 illustrates
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the update process of the explanation tree in the reporting phase, where dashed black

lines indicate counteracting causes. Notice that the variable total financial results (r3)

is not part of the explanation. This is indicated with a grey line.

Figure 6.2: Explanation tree T 2 of hidden causes for S = {∂r1 = high} on level M0;2,
generated in the reporting phase of the algorithm. In the tree, r8 and r9 are identified
as hidden causes.

The diagnostic process is continued for all significant contributing causes. Thus,

the next events to be explained are:

〈ABC-company(2001), ∂r6 = high, branch average(2001)〉

and

〈ABC-company(2001), ∂r7 = low, branch average(2001)〉.
The previous examples of different one-level explanations are now combined to a

complete tree of causes. Figure 6.3 depicts the results of the explanation.

The following economic interpretation is given to the explanation tree in Figure

6.3. Recall the initial business question: Why are the ABC-company’s total results

before taxation relatively high compared to its branch average? Comparison of its

results, revenues, and cost structures with those of the other companies show that

the ABC-company’s high results before taxation is due to a combination of compar-

atively high total operating results (r2) and comparatively high financial revenues
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Figure 6.3: Diagnosis for S = {∂r1 = high} at the ABC-company represented as the
final explanation tree T 4.

(r8), despite the fact of comparatively high financial expenses (r9). Moreover, the

ABC-company’s high total operating results are explained by a combination of high

total operating revenues (r6) and low total operating costs (r7). More specifically,

the total operating revenues are high because of a combination of high total net sales

(r15) and additional revenues (r14). The total operating costs of the company are low

mainly because of low total housing costs (r28), low total selling expenses (r30), low

total other operations costs (r33) and low depreciations on tangible and intangible

fixed assets (r34), despite the fact that, costs of goods sold (r23) and total costs of

labour (r24) are comparatively high, and so on. Notice that the explanation method,

just as a human analyst, filters insignificant causes out of the explanation. In general,

comparison of the result of our explanation method with human analysis shows clear

similarities.

6.2.4 Software implementation

We present the most important concepts of the software for business diagnosis. The

software is implemented in MS Excel in combination with Visual Basic. This applica-

tion is initially developed to perform the experiments and analyses for the case study

at Statistics Netherlands. However, the prototype software could also handle data
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and business models from other domains. The software design is modelled and ex-

plained with a number of Unified Modeling Language (UML) use cases. In Figure 6.4,

the main use case diagram is depicted. In this figure three actors are presented: the

Figure 6.4: Main (UML) use case diagram for diagnosis.

human actor Business Analyst and two system actors labelled Data Set and Business

Model respectively. The use case diagram represents the main functionality of the

diagnostic application with the use cases: Identify Exceptions, Generate Explanation,

and Manage Application. These use cases are explained in more detail in Appendix

B, Section B.2.

With the use case Identify Exceptions the business analyst can detect symptoms

in a data set. Here the analyst first has to start up the diagnostic application and

load the data set. Subsequently, the analyst selects the appropriate normative model.

Based on that, the reference values and various statistics are computed by the ap-

plication. When the analyst specifies a threshold, exceptions can now be marked

in the data set, for example, with a color. The analyst can select a certain excep-

tion for explanation generation, with the use case Generate Explanation. Here the
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analyst has to specify the appropriate reduction measure and the method used for

explanation, i.e. maximal explanation with or without look-ahead. The application

computes the influence values for all variables in the business model with the selected

method for explanation. Based on the influence values, the causes for the symptom

are determined and with the reduction measure the set of causes is reduced to a set

of significant causes. Subsequently, the analyst can view all the causes in the form

of an explanation tree, which can be browsed in a tree viewer application. With the

use case Manage Application, the analyst can maintain the business model that is

associated with a certain data set. The analyst can add, change, and delete business

equations in the business model.

Two screenshots of the main graphical user interfaces are depicted in Figure 6.5

and Figure 6.6. In Figure 6.5, the main user interface screen is depicted. This

GUI controls the modules for symptom detection and explanation generation. In

Figure 6.5: Main user interface of the CBS diagnosis application.

the upper part of the main user interface, symptoms are identified in the underlying
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data set, based on interfirm or historic comparison. Here the analyst can select the

desired threshold, expressed as a probability (e.g. .95 or .99) in the standard normal

distribution. If the button “Detect symptoms” is selected, exceptional firms are

highlighted in the sheet by a color scheme. The color red is used for a low exception

and the color green for a high exception. If the button “Delete symptoms” is selected

the exceptions are removed from the data sheet and the analyst might try a different

threshold.

In the upper part of the main user interface, explanations can be generated by

selecting a specific firm from the list. Before explanations can be generated, the

analyst can specify the fraction T to construct parsimonious causes (RM1) and the

number of desired look-aheads in the business model. After that explanations can be

generated by selecting the button “Generate explanation”. Significant causes for the

symptom are now computed and determined in the background. These causes can be

represented as an explanatory tree by selecting the button “View explanation”, then

the procedure tree-viewer is invoked.

For the implementation of this procedure we applied tree programming to generate

the tree of causes. The tree-viewer interface of the program is depicted in Figure 6.6.

In the viewer the whole explanatory graph can be made visible by manipulating

the tree. In addition, the tree of causes is projected on the explanatory graph by

highlighting parsimonious causes with a color; green for a parsimonious contributing

cause and red for a parsimonious counteracting cause. By clicking with the mouse on

the cause under consideration, the details for the cause are made visible in the right

panel of the screen, e.g. the influence value and the type of cause.

6.3 Case 2a: Financial OLAP database (Top-down

explanation)

In this section (Case 2a) and the next (Case 2b), we study the GoSales financial

OLAP database (IBM Cognos Software 2012). See also Example 2.1.1 in Chapter

2 for more information about this database. In the study, exceptional values are

identified with both managerial and statistical normative models, and explained with

both the top-down explanation method in Section 6.3, and the greedy explanation
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Figure 6.6: Tree viewer in the software for explanation. Here the results for the firm
‘569697’ are depicted in the list box as an explanation tree on the screen’s left panel.
The variable ‘Total operating revenues’ (r6) is selected in the tree and its explanation
details are presented automatically on the screen’s right panel.

method in Section 6.4.

6.3.1 Exception identification

The method for statistical exception identification (Section 3.6) is applied on the cube

C = Year × Country × ProductLine, with slices

SYear=2001(SProductLine=Personal Accessories(C)).

For the measure y231(C) = revenues231(C), an arbitrary context is taken from the

financial databases to direct the business analyst to possible exceptional cells in this

cube. The cube C is briefly denoted by C = Country × Personal Accessories. The

cube’s initial actual data is presented in Figure 6.7. It describes the revenue figures

of the GoSales company in 20 countries, where the company is active for 5 types of

product accessories in the year 2001.
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Figure 6.7: Revenue figures, derived from the example financial database, organised
per type of Personal Accessories (P 1) and Country (L3) with a slice on the year
2001 (T 2). The colors indicate the level of exception. Notice that before exception
identification the data is scaled by taking the natural logarithms of the data. Here the
cell revenues(United States, Binoculars) is identified as a moderate “low exception”
when the normative model R is a two-way ANOVA model.

The algorithm for exception identification is initially configured with a simple

additive ANOVA model R, because the measure revenues is a continuous measure.

The threshold for the scaled residuals is δ = 1.036 for the high exceptions and −δ =

−1.036 for the low exceptions. In the algorithm the following steps are taken:

1. Data transformation. All the measure values in the cube are scaled by natural

logarithms.

2. Statistical modeling. Here the simple additive two-way ANOVA model A0

ŷ231(Country,Personal Accessories) = μ̂+ λ̂1(Country) + λ̂2(Personal Accessories)

is applied initially.

3. Diagnostics.
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(a) F-tests determine whether the main effects in the model are significant. The null

hypotheses H0;D3
1
and H0;D1

2
say that there are no main effects for dimension level D3

1

(Country) or dimension D1
2 (Personal Accessories) respectively.

Table 6.4: Analysis of Variance Table for the additive model.
Response: log(Revenues) df Sum Sq Mean Sq f value Pr(>F)
Country 19 30.3627 1.5980 32.704 < 2.2e-16 ***
Personal Accessories 4 3.9947 0.9987 20.438 1.835e-11 ***
Residuals 76 3.7137 0.0489

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05‘.’0.1 ‘ ’ 1

In Table 6.4 we observe that the F-statistic (see Definition 3.13) for Country has

the value 32.704 and for Personal Accessories the value 20.438. Both null hypotheses

are clearly rejected because for Country Pr{f > F(20−1);0.05} = 0.05 and for Personal

Accessories Pr{f > F(5−1);0.05} = 0.05. Therefore, it can be concluded that both the

Country effect as well as the Personal Accessories effect should be included in the

main-effects ANOVA model because these effects are significant.

In general, we use the simplest main-effects ANOVA model that meets the F-test.

To single out exceptional cell values for explanation, the use of the full-effects ANOVA

model, which includes (possible) interaction effects, is not strictly necessary, as long

as the Gauss-Markov assumptions are not (too heavily) violated by the simplest main-

effects model. The advantage of this model for the construction of explanations is

that it produces consistent reference values (Theorem 4.7.1).

(b) Inspection of the two interaction plots in Figure 6.8 shows that the lines are fairly

parallel. This suggest that interaction effects are negligible. Therefore, it is concluded

that it is not necessary to consider the full-effects ANOVA model.

(c) The strict statistical normality tests, the Shapiro-Wilk test and the Kolmogorov-

Smirnov test, reject the null hypothesis that the residuals come from a normal distri-

bution. This is based on the statistics W = 0.834, p-value = 3.188e-09 and residuals

D = 0.362, p-value = 8.253e-12 respectively, with significance level α = 0.05. How-

ever, the normal Q-Q plot in Figure 6.9 does suggest that the model residuals are

distributed normally to some extent, because most of the residual data points ap-

proximately lie on a 45◦ line. A number of outliers are clearly evident at both ends

of the range.
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Figure 6.8: The interaction plot for dimension Location, level Country (upper figure)
and interaction plot for dimension Product, level Personal Accessories (lower figure).
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Figure 6.9: Normal Quantile-Quantile (Q-Q) plot of the standardized residuals.

(d) The homogeneity of variances is tested with the Bartlett test and the Fligner-

Killeen test. Based on these tests we have to accept the null hypothesis of homoscedas-

ticity if a significance level α = 0.05 is used. The results for the Fligner-Killeen test are

log(Revenues) by Personal Accessories by Country Fligner-Killeen: med Chi-squared

= 3.2684, df = 4, p-value = 0.514 and log(Revenues) by Country by Personal Acces-

sories Fligner-Killeen: med Chi-squared = 10.3277, df = 19, p-value = 0.9444. Since

the probabilities are larger than 0.05, we conclude that the variances are the same

for each cell in the cube.

4. Exception identification. Based on the above diagnostics the initial model is

accepted for exception identification, because the effects in the model are all significant

and there are no violations of the Gauss-Markov assumptions. Some additional model

statistics are: R2 = 0.9025 (see Definition 3.12), the model’s F-statistic is 30.57 on 23

and 76 d.f., and the residual standard deviation is s = 0.2211 (see Definition 3.11).

In Figure 6.10 the model residuals are plotted as a histogram. From this figure it can

be concluded that there might be some low exceptions, indicated by the bar at the

left-hand side of the histogram.
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Figure 6.10: Histogram of model residuals.

All the scaled residuals (see Definition 3.4) in C are now compared with a range

of threshold values given by the probability values 0.01, 0.05, 0.1, and 0.15. For the

thresholds δ = 1.0364 and −δ = 1.0364, we find that the cell c =(United States,

Binoculars) in the year 2001 is the only (low) exception with the scaled residual

∂y(c)/s = −1.2120, because −1.2120 < −1.0364. This exceptional cell is indicated

with a yellow color in Figure 6.7. Then we (or the analyst) explore this deviating cell

in more detail, to find the reasons for the deviation in the cell’s downset.

A full specification of the event 〈a, F, r〉 to be explained is

〈ya(c), ∂y231(c) = “low”, yr(c) = ŷ(c)〉,
where c = (2001, USA, Binoculars) (see expression 4.2). So, in words, we pose the

following business question:

“Why are the revenues in the cell (2001, U.S.A., Binoculars) on level 231 relatively

low compared with the expected value for this cell, computed with the simple additive

ANOVA model, in the cube C under consideration?”

The exception is explained with top-down explanation (see Algorithm 5) in the

downset {↓ c}. The algorithm is executed multiple times over various drill-down



Case studies and Software implementation 165

analysis paths in the downset by applying appropriate additive ANOVA models. The

following analyses are considered:

1. Explanation in the Time dimension along the path [231]→ [131]→ [031];

2. Explanation in the most specific dimension: Time along path [231] → [131],

Location along path [231]→ [221], and Product along path [231]→ [230].

6.3.2 Explanation generation in analysis 1

In the first analysis, the business analyst wants to explain the event solely in the

Time dimension over the drill-down path p = [231] → [131] → [031], on the Quarter

and Month level. This is an application of reduction method RM3b. As an additional

reduction method, RM1 is applied here with fraction T+ = T− = 0.9, to remove the

effect of marginal causes. For each cell on the path p in the downset {↓ c}, both the

actual as well as the reference value are required for explanation of the event. Here y

is the additive measure revenues, therefore the actual values are directly available by

applying drill-down operators on the cell c. For example, the operation R−1T (c) gives

the actual values for cells on the Quarter level. This corresponds with the additive

drill-down equation

y231(c) =
4∑

i=1

y131(2001.Qi,U.S.A.,Binoculars).

Moreover, the reference values for cells in p are computed by application of the same

type of normative model R, as used for the computation of the reference value for the

root cell c. Therefore, for each cell c′ = R−1T (c) its reference values are derived with

the additive ANOVA model A1

ŷ131(c′) = μ̂+ λ̂1(2001.Quarter) + λ̂2(Country) + λ̂3(Personal Accessories),

in the context cube 2001.Quarter × Country × Personal Accessories. See the data in

Figure C.1 in Appendix C.2.

A1 is a specialized ANOVA model for the quarters, which is a specialization of

ANOVA model A0 within an unfolded Time dimension (see page 121, Case 2). The

model contains the effects of the ANOVA model that was used for the parent cell,
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Table 6.5: Data for explanation of ∂y231(c) =“low” in the Time dimension, on the
level Quarter in the context cube 2001.Quarter × Country × Personal Accessories.

actual reference inf(y131(c′), y231(c)) relative inf.

(2001,.,.) 81,822.00 331,445.52
(Q1,.,.) 26,230.40 71,163.59 -44,933.19 0.18
(Q2,.,.) 18,738.80 84,500.17 -65,761.37 0.26
(Q3,.,.) 12,912.80 79,115.04 -66,202.24 0.27
(Q4,.,.) 24,000.00 96,666.71 -72,666.71 0.29

plus the 2001.Quarter-effects. The two conditions for Theorem 4.7.1 are fulfilled, and

therefore the following equations holds:

ŷ231(c) =
4∑

i=1

ŷ131(2001.Qi,U.S.A.,Binoculars).

Hence, the drill-down equation for the actual quarter values holds also for the reference

quarter values. Next in Table 6.5 a comparison is made between the actual and the

reference values for the cell c to explanation the Time dimension at the level Quarter.

In this table the influence values are computed using (4.12). Because the drill-down

equation holds for both actual and reference values, Theorem 4.2.1 applies, and the

inf-measure is correctly interpreted as a quantitative specification of the change in

y231(c) that is explained by a change in y131(c′). In the table relative influences are

computed by (ya(c) − yr(c))/ inf(y(c′), (c)). From the data in the table it can be

concluded that Cbp = {(Q1,.,.), (Q2,.,.), (Q3,.,.), (Q4,.,.)}, since all the contributing

causes are needed to explain the desired fraction T+. Because in this explanation

step no parsimonious counteracting causes are identified, Cap = ∅.
Because all causes on the Quarter level are significant, the top-down algorithm

continues explanation for all quarters on their constituent months, i.e. the next

level in the analysis path p. To determine the influences of these individual months,

reference values have to be computed for each month. For each cell c′′ = R−1T (c′) its

reference value is computed by ANOVA model A2

ŷ031(c′′) = μ̂+ λ̂1(2001.Month) + λ̂2(Country) + λ̂3(Personal Accessories),

in the context cube 2001.Month × Country × Personal Accessories. The model A2
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Table 6.6: Data for explanation of ∂y131(2001.Q4, U.S.A, Binoculars)=“low” in the
Time dimension, on the level Month in the context cube 2001.Quarter.Month ×
Country × Personal Accessories.

actual reference inf(y031(c′′), y131(c′)) relative inf.

(2001.Q4,.,.) 24,000.00 96,666.71
(Oct,.,.) 18,560.00 50,220.16 -31,660.16 0.44
(Nov,.,.) 0.00 22,417.20 -22,417.20 0.31
(Dec,.,.) 5,440.00 24,029.35 -18,589.35 0.26

is a specialization of model A1 within the Time dimension, from the Quarter to the

Month level (see page 120, Case 1b).

In this way, consistent reference values are obtained for each quarter Qi, given by

ŷ131(2001.Qi,U.S.A.,Binoculars) =
3∑

j=1

ŷ031(2001.Qi.Monthj,U.S.A.,Binoculars),

where i = 1, 2, 3, 4 and j = 1, 2, 3. The reference objects are consistent because the

ANOVA model applied at the Month level. It is a specialization of the ANOVA

model applied on the Quarter level, and therefore the conditions for Theorem 4.7.1

are met. As an example, a comparison is made in Table 6.6 between the actual

and the reference values for the cell (2001.Q4, U.S.A, Binoculars) and its children

on the Month level. From the data in the table, it can be concluded that Cbp =

{(Q4.Oct,.,.),(Q4.Nov,.,.),(Q4.Dec,.,)}, since all the contributing causes are needed

to explain the desired fraction T+. Obviously, Cap = ∅. All the months of the last

quarter show the same pattern: in each month the realized revenues are relatively

low in the U.S.A for the ProductType Binoculars. In particular, the month October

stands out as a large contributing cause. It explains 44% of ∂y131(2001.Q4, U.S.A,

Binoculars) and 13% of ∂y231(2001, U.S.A, Binoculars). In addition, the previous

examples of one-level, top-down, explanations for the symptom, are combined to

a complete diagnosis in the Time dimension. The explanation tree in the lower

part of Figure 6.11 summarizes the results. In this figure, the straight lines indicate

parsimonious contributing causes and dotted lines indicate counteracting causes, the

numbers on the lines indicate the relative values for the influence measures, and the

ratios indicate the specificity measure (S) value of the explanation step.
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Figure 6.11: Explanation trees that partially explain the exceptional cell rev-
enues(2001, U.S.A, Binoculars) = “low” in the Product (P), Time (T), and Location
(L) dimension.

In addition, we give a business interpretation of the complete explanation tree in

the Time dimension. From its inspection it can be concluded that the revenues in the

cell c declined because the revenues decreased in all quarters and all months, they

basically all show the same pattern. However, the largest part of the decrease, 56%,

occurred in the last two quarters on the year. Especially, the months July, September,

and October are relatively large causes and are sure candidates for further inspection.

Notice that the root symptom of the explanation tree is always an exceptional

cell value. Other parts of the explanation tree, i.e. significant causes that explain the

symptom, can be exceptional values in some context cube, but this is not required

for the explanation of the initial symptom. Moreover, the structure of the final

explanation tree depends on the class of normative models R that is used, because

the reference object r in the explanation formalism (see expression 4.1) changes. The

same reasoning holds for different normative models within one class R. For example,

when in the analysis under consideration a different ANOVA model, e.g. the main-

effects ANOVA model with only the Country effect included, would have been used
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in explanation of the same symptom, the resulting explanation tree would very likely

have a different structure.

6.3.3 Explanation generation in analysis 2

In the second analysis we apply reduction method RM2. The reference values for the

dimensions are computed by main-effects ANOVA models. For explanation in the

Location dimension along the path [231] → [221] the reference values are computed

with the ANOVA model

ŷ131(c′) = μ̂+ λ̂1(Country.City) + λ̂2(Personal Accessories),

in the context cube Country.City × Personal Accessories, and for explanation in the

Product dimension on the path [231]→ [230] the reference values are computed with

ŷ131(c′) = μ̂+ λ̂1(Country) + λ̂2(Personal Accessories.Product),

in the context cube Country × Personal Accessories.Product. Notice that reference

values for the Time dimension on the level Quarter were already computed in the

previous case.

Explanatory details for the explanation in the Product dimension are given in

Table 6.7. From the data in this table, it can be concluded that Cbp = {(.,.,Seeker

Table 6.7: Data for explanation of ∂y231(c) =“low” in the Product dimension, on the
level Product.

actual reference inf(y230(c′), y231(c)) relative inf.

(.,.,Binoculars) 81,822.00 331,445.52
(.,.,Seeker 35) 0.00 86,255.75 -86,255.75 0.35
(.,.,Seeker 50) 0.00 75,055.49 -75,055.49 0.30
(.,.,Seeker Extreme) 81,822.00 101,933.53 -20,111.53 0.08
(.,.,Seeker Mini) 0.00 68,200.75 -68,200.75 0.22

35), (.,.,Seeker 50), (.,.,Seeker Mini)}, since these three contributing causes explain

the desired fraction T+, as shown by (0.35+0.3+0.22)/1 ≥ 0.9 (see expression (4.5)),

and Cap = ∅. Remarkable here is that the actual values for the parsimonious causes
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are 0, i.e. no revenues were generated for these products. Next the specificity value for

this explanation step is computed as SP = 4/3 , because the number of possible causes

is |R−1T (c)| = 4, and the number of identified actual causes is |Cbp|+ |Cap| = 3+0 = 3

(Equation (4.23)).

In summary, three partial explanation trees are depicted in Figure 6.11, from

west, south, to east, corresponding with the explanation trees for the Product, Time,

and Location dimension, respectively. For the root level in each of the trees we have

computed the measure of specificity S with Equation (4.22) for each dimension. For

all the explanation steps in the downset of the exceptional cell c that are possible,

the specificity value range is SP ≥ ST ≥ SL (4/3 ≥ 4/4 ≥ 4/4). With RM2 the

most specific explanation step is taken, in this case in the direction of the Product

dimension. Top-down algorithm now proceeds the explanation process with the cells

(.,., Seeker 35), (.,., Seeker 50), and (.,., Seeker Mini). For each of these cells the

measure of specificity is applied again and the explanation step is selected with the

highest specificity value, and so on. This mechanism can be continued until the base

cube is reached.

6.4 Case 2b: Financial OLAP database (Greedy

explanation)

In this section, we illustrate the greedy algorithm for explanation (Algorithm 6).

6.4.1 Exception identification

We identify exceptions in the GoSales cube C = 2001 × Country for the measure

profit (y). The cube’s data is presented in Figure 6.12. In this case, the profit figures

on the previous year, represented by the cube C ′ = 2000 × Country, are used as a

historical normative model (see Section 3.2.3). The cube of reference data is depicted

in Appendix C, Figure C.6. Algorithm 1 is applied to identify exceptional values in

C:

1. Reference values are taken from C ′;
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Figure 6.12: Profit figures of the year 2001, organised per Country (L3) and All-
Products (P 3). The colors indicate the level of exception. Here the normative model
is based on the profit figures of the previous year, see Figure C.6 for the data.

2. Cell residuals are computed by ∂y(C) = y(C)− y(C ′);

3. Scaled cell residuals (see Definition 3.4) are computed by ∂y(c)/σ, where σ =

77, 409.62, and c ∈ C;

4. The scaled residuals are compared with a range of threshold probability values

taken from the standard normal distribution: 0.99, 0.95, 0.9, and 0.85 for high

exceptions and 0.01, 0.05, 0.1, and 0.15 for low exceptions.

5. The following cells in C are marked as exceptions with a color scheme: the

cell (2001, China) is a moderate high exception and the cells (2001, Canada),

(2001, The Netherlands), (2001, Spain), (2001, Sweden), and (2001, Belgium)

are moderate low exceptions. The largest low exception is found in the cell

c =(2001, The Netherlands), where ∂y(c) = ya(c) − yr(c′) = 199, 690.65 −
378, 324.70 = −178, 634.05, ∂y(c)/σ = −2.31, and −δ = −1.64 (= Pr. 0.05).
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Subsequently, we identify possible causes in {↓ c}. A full specification of the event

to be explained is

〈ya(c), ∂y233(c) = “low”, yr(c′)〉,
where c = (2001, The Netherlands) and c′ = (2000, The Netherlands). In words:

“Why is the measure profit in the cell (2001, The Netherlands) on level 233 relatively

low compared with the reference value for this cell, the profit in the previous year in

The Netherlands on the aggregated product level ‘ALL-Products’, represented by the

cell (2000, The Netherlands), in the cube C under consideration?”

This event is explained with greedy explanation (Algorithm 6) in the downset {↓ c}.
Subsequently, we explain multiple exceptional cell values (events) in the cube C to

formulate a generic explanation (Section 4.6.5 with RM5).

6.4.2 Greedy explanation generation

Here the exceptional cell ∂y(c) is explained with greedy explanation in:

1. the Product dimension;

2. the Time dimension;

3. a combination of the Product and Time dimension.

Table 6.8 shows the aggregated table which is the basis for greedy explanation in the

Product dimension, for the city of Amsterdam. The complete table is composed out

of 143 records. From the data in the table we can conclude that y222(., ., Camping

Equipment) is the largest contributing cause in the Product dimension and y220(., .,

Golf Equipment.Irons. Hailstorm Titanium Irons) is the largest counteracting cause.

In Figure 6.13, the results are depicted in an explanation tree, which reports only the

10 largest contributing causes for the symptom in the Product dimension (see RM4).

Table 6.9 shows the aggregated table which is the basis for greedy explanation in

the Time dimension for the city of Amsterdam. The complete table has 16 records.

Observe that y123(Quarter 2, ., .) is the largest contributing cause in the Time

dimension, which explains 81% of the symptom, and y123(Quarter 1, ., .) is the
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Table 6.8: Aggregated table for the Product dimension where the actual object is
profit(2001, Netherlands), the norm object is profit(2000, Netherlands), and the influ-
ence values for instances within the Product dimension are related to the exceptional
cell value profit223(c).

Nr. ProductLine ProductType Product Actual Norm Rel.
P 2 P 1 P 0 (2001) (2000) Inf.

All All All 199,690.65 378,324.70
1 Camp. Equip. All All -67,075.17 16,796.14 0.47
2 Mount. Equip. All All 49,098.42 86,611.58 0.21
3 Camp. Equip. Tents All -121,318.02 -93,058.71 0.16
4 Golf Equip. All All 106,474.92 131,752.22 0.14
5 Pers. Acces. All All 105,043.91 130,653.60 0.14
6 Golf Equip. Woods All 55,612.59 76,180.27 0.12
7 Camp. Equip. Packs All 18,250.44 37,208.57 0.11
8 Camp. Equip. Lanterns All 20,309.57 37,713.44 0.10
9 Mount. Equip. Rope All 6,602.70 23,717.68 0.09
10 Camp. Equip. Tents Star Dome -50,067.72 -33,682.12 0.09
. . . . . . . . . . . . . . . . . . . . .
143 Golf Equip. Irons Hail. Tit. Ir. 14,780.06 5,468.46 -0.05

Table 6.9: Aggregated table for the Time dimension where the actual object is
profit(2001, Netherlands), the norm object is profit(2000, Netherlands), and the in-
fluence values for instances within the Time dimension are related to the exceptional
cell profit223(c).

Nr. Quarter Month Actual Norm Rel. Inf.
T 1 T 0 (2001) (2000)

All All 199,690.65 378,324.70
1 Quarter 2 All 49,683.14 194,707.50 0.81
2 Quarter 2 April 24,531.46 86,596.44 0.35
3 Quarter 2 June 29,253.24 74,822.76 0.26

. . . . . . . . . . . . . . . . . .
16 Quarter 1 All 24,520.99 13,446.28 -0.06
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Figure 6.13: Greedy explanation in the Product dimension reporting the 10 largest
contributing causes.

largest counteracting cause. The explanation trees with the 10 largest contributing

causes (see RM4) in the Time dimension are depicted in Figure 6.14. Table 6.10 shows

the aggregated table which is the basis for greedy explanation in the Product and

Time dimension, for the city of Amsterdam. The complete table has 2413 records.

From this table we can find the cell, on the lowest level in the exceptional cell’s

downset, with the largest positive influence, i.e. the largest contributing cause. The

corresponding drill-down path is (see record 32 in Table 6.10):

y223(2001, Amsterdam, All-Products)→ y123(Q2, ., .)→ y023(May, ., .)→
y022(., .,Golf Equipment)→ y021(., .,Woods)→
y020(., .,Hailstorm Titanium Woods Set).

The cell with the largest negative influence, is corresponding to the following drill-

down path (see record 2413 in Table 6.10):

y223(2001, Amsterdam, All-Products)→ y123(Q3, ., .)→
y122(., .,Camping Equipment)→ y121(., .,Tents)→ y120(., ., Star Gazer 3).

Hidden contributing causes in an aggregated table are records that correspond

with cells with an influence value larger than, or equal to, T+, but that have an ances-

tor with an influence value that is smaller than T+. We now identify possible hidden
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Table 6.10: Aggregated table for both the Product and Time dimension where the ac-
tual object is profit(2001, Netherlands), the norm object is profit(2000, Netherlands),
and the influence values for instances within the Product and Time dimension are
related to the exceptional cell profit223(c).

Nr. Quar. Mon. P.Line P.Type Prod. Actual Norm Rel.
T 1 T 0 P 2 P 1 P 0 (2001) (2000) Inf.

All All All All All 199,690.65 378,324.70
1 Q2 All All All All 49,683.14 194,707.50 0.81
2 All All Camp. Eq. All All -67,075.17 16,796.14 0.47
3 Q2 Apr. All All All 24,531.46 86,596.44 0.35

. . . . . . . . . . . . . . . . . . . . . . . . . . .
32 Q2 May Golf Eq. Woods H.Tit.Set 5,192.82 20,337.40 0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . .
59 Q3 All Pers. Acc. Knives Surv.Edge 594.00 9,368.75 0.05
. . . . . . . . . . . . . . . . . . . . . . . . . . .
73 Q3 All All All All 60,119.14 67,569.40 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . .

2413 Q3 All Golf Eq. Tents St.Gaz.3 -5,693.20 -23,481.20 -0.10
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Figure 6.14: Greedy explanation in the Time dimension reporting the 10 largest
contributing causes.

causes. From Table 6.10, we observe that the cell (2001.Q3, Amsterdam, Personal

Accessories Knives.Bear Survival Edge) is a parsimonious hidden contributing cause

(see record 59), because its influence on the symptom is larger than T+ (0.05 ≥ T+),

despite the fact that its ancestor cell (2001.Q3, Amsterdam, All-Products) has an

influence on the symptom that is smaller than T+ (0.04 < T+) (see record 73). The

identification of the hidden cause corresponds with the following drill-down analysis

path:

y223(2001, Amsterdam, All-Products)→ y123(Q3, ., .)→ y122(., .,Pers. Accessories)
→ y121(., .,Knives)→ y120(., .,Bear Survival Edge).

Notice that record 2413 in the table corresponds with a hidden counteracting cause

(−0.10 ≤ T−).

The explanation tree with the top-15 contributing causes in both the Time and

Product dimension, with a slice on Quarter 2, is depicted in Figure 6.15. The causes

in the tree are the 15 largest contributing causes in the total set of 2413 causes for

Quarter 2. The business interpretation of the explanation tree is that the exceptional

cell value is explained mainly by lower profits made in Quarter 2 (81%), in all its

constituent months, over all product lines, except the line Outdoor Protection. An

interesting, specific explanation of the symptom is the relative low profits over the

path (, .,Camping Equipment)→ (., .,Tents)→ (., ., Star Gazer 3).
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Figure 6.15: Greedy explanation in the Time and Product dimension with a slice on
Quarter 2, reporting the 15 largest contributing causes in this Quarter.

Remark 6.4.1. Notice that in the above example analyses, hidden causes for the event

are identified (automatically) by the greedy explanation method, because all signif-

icant causes at some level in the lattice are reported. In contrast, if the same event

was explained top-down in {↓ c} with Algorithm 5, without configuring the look-

ahead functionality, possible hidden causes might be missed in the explanation. This

is shown in the following example. We now explain the event with top-down explana-

tion solely in the Product dimension, in the context cube Year.Q3 × Amsterdam. The

algorithm is configured with T+ = 0.95 for RM1, i.e. in each step at least 95% of the

difference is explained. From the data in Table C.4 in Appendix C, it can be concluded

that, (., ., Personal Accessories.Knives) and (., ., Personal Accessories.Knives.Bear

Survival Edge) are elements of Cbp because its influences are ≥ T+, and (., ., Camping

Equipment.Tents) and (., ., Camping Equipment.Tents.Star Gazer 3) are elements of

Cap because its influence are ≤ T−. Their parent, the cell (2001.Q3, Amsterdam, All-

Products), is not included in the set of parsimonious causes, due to the neutralization
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of positive by negative influence values. Those causes are clearly contributing and

counteracting hidden causes (see Definitions 4.3 and 4.4). The problem of cancelling-

out effects is illustrated graphically in Figure 6.16. The neutralized cause Quarter 3

is represented with a grey line in the figure.

Figure 6.16: The presence of hidden causes in the downset of Quarter 3. This quarter
itself is not part of the explanation of the identified symptom due to neutralization.
However, cells in the downset, (Accessories.Knives.Bear Survival Edge) and (Camping
Equipment.Tents.Star Gazer 3) are hidden parsimonious causes.

6.4.3 Generic explanation generation

In this section a generic explanation is formulated for all the identified low symptoms

depicted in the direction of the Product dimension of Figure 6.12 (See Section 4.6.5 for

RM5). We try to find a pattern explaining the declining profit level in the 5 countries.

They are represented by the range of cells in the cube C: (2001, Canada), (2001, The

Netherlands), (2001, Spain), (2001, Sweden), and (2001, Belgium). For each of these

symptoms a top-15 report of the largest contributing causes was generated. Table 6.8

presents these causes for The Netherlands. Tables C.5, C.6, C.7, and C.8 in Appendix
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C.3 represent the causes for the other countries. It follows that sCbsimilarity = {(2001,
X, Camping Equipment), (2001, X, Camping Equipment.Tents), (2001, X, Camping

Equipment.Lanterns)} (see Equation 4.24), where X ∈ {Canada, The Netherlands,

Spain, Sweden, Belgium}. The contributing causes in Cbsimilarity are all parsimonious,

because they all exceed T+. These results are summarized in Figure 6.17. In this

Figure 6.17: Generic explanation for the cell ∂profit233(2001, X, All-Products)
= “low”, where X ∈ {Canada, The Netherlands, Spain, Sweden, Belgium}, in the
Product dimension.

figure the average influence values over the five countries are depicted next to lines

that connect the causes. An obvious recommendation could be, based on a inspec-

tion of this explanation tree, to focus on extra marketing activities for products in

the Camping Equipment product line, especially for the product types Tents and

Lanterns.

6.4.4 Software implementation

The software for the explanation of exceptional values in OLAP databases and the

scalability of the approach is presented briefly in this section. The software design

has large similarities with the software described in Section 6.2.4, but also has some

important differences. Different actors compared to Figure 6.4 are used. The system

actors are:

• the OLAP cube. The diagnostic application needs to connect with an OLAP

data cube, represented in MS Access or MS Excel, instead of a flat data file.
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• the R statistical software package. For the identification of exceptions, the soft-

ware implementation uses functions from the software package “R for statistical

computing” (The R Foundation for statistical computing 2011).

• the Multi-dimensional/Business model. For explanation of an exceptional cell

in an OLAP cube an explicit model of the multi-dimensional and/or business

model is required. This model can, in theory, automatically be obtained from

the OLAP cube. In our prototype software, this model needs to be mod-

elled/defined by hand. The software environment to define this model is de-

picted on the left hand side of Figure 6.19.

In the R package the following functions are used in the algorithm for exception

identification (see Section 3.6):

• lm() fits a linear model. In addition, the functions summary() is used to produce

summary statistics for the fitted model;

• anova() computes the analysis of variance table with F-tests for the fitted model;

• interaction.plot() generates an interaction plot;

• shapiro.test() and ks.test() are used to test for normality;

• qqplot() generates a Q-Q plot;

• bartlett.test() and fligner.test() are used to test for homogeneity.

Moreover, the graphical capabilities of R are used to produce statistical figures to

illustrate various statistical tests (see Section 6.3.1). Figure 6.18 depicts the UML

class diagram of the application for diagnosis. This figure gives a more detailed

outline of the diagnostic application’s design and shows the most important classes

and their attributes, operations, and relations. In this diagram the class OLAP

cube is composed out of (relations between) measures, dimensions, and dimension

hierarchies. In this OLAP cube both the actual and (computed) reference data is

present. The actor Business Analyst navigates to a certain Context Cube in the OLAP

cube. In this symptom cube the Business Analyst can identify possible exceptional

cells based on some Normative Model. An Exceptional Cell can be explained by
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Figure 6.18: UML class diagram of the application for diagnosis.

the class Explanation. This class is composed out of Causes and based on actual

and reference data from the OLAP Cube. The class Explanation contains the actual

algorithms for explanation, i.e. implementation of Algorithms 4, 5, 7, and 6, described

in Chapter 4. The class Explanation uses the class Aggregated Table, necessary for

greedy explanation. The Explanation can be represented as an Explanation Tree to

the Business Analyst.

The software itself is implemented in MS Excel, with pivot tables 2, and MS Access

in combination with Visual Basic. The system architecture of the application has the

following structure. The back-end of the application is the MS Access database,

where the multi-dimensional model and OLAP source data is stored. In the MS

Excel front-end, that connects with the database via an Open DataBase Connectivity

2A pivot table is a two-dimensional spreadsheet with associated subtotals and totals that supports
viewing more complex data by nesting several dimensions and dimension levels on the x- or y-axis.
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(ODBC) connection, the OLAP data can be represented as an OLAP cube with pivot

tables. In MS Excel the diagnostic application can be configured for both exception

identification and explanation via a number of graphical user interfaces. In Figures

6.19 and 6.20, a number of screenshots from the prototype software 3 are depicted

for illustration. The tree-viewer interface of the application is depicted in Figure

Figure 6.19: On the left hand side of the figure, the software to define the multi-
dimensional/business model of the OLAP database is represented. On the right hand
side of the figure, the software that enables customization of the diagnostic application
is depicted.

6.21. In the viewer the whole explanatory graph can be made visible my manipulating

the tree. In addition, the tree of causes for an exceptional cell is projected on the

explanatory graph by highlighting parsimonious causes with a colour. By clicking on

the cause under consideration, the details for the cause become visible in the right

panel of the screen.

3We would like to thank Arjen Gideonse from SAP for his contribution to the implementation of
the software for explanation of exceptional values in multi-dimensional databases.
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Figure 6.20: On the left hand side of the figure, the GUI is shown that is used to
select a specific cell for explanation in a context cube. On the right hand side of the
figure, it is shown how the diagnostic module is integrated in the existing software,
in this case MS Excel, to analyse OLAP data.

Figure 6.21: Tree viewer GUI of the OLAP diagnostic application. In the tree viewer
the Time and Product dimension are visualized. The hierarchy of the Product dimen-
sion is unfolded. Parsimonious causes for a symptom are depicted in the hierarchy
with a green or red color.
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Although transaction databases can be very large, the kind of analysis discussed

in this thesis is mostly performed on aggregated data, as in Sections 6.3 and 6.4. The

method for explanations as described in this thesis is scalable in the software since

all operations are linear in the number of records in an OLAP data cube. Notice

that here the ANOVA models for computation of the reference values also have linear

complexity. If other more complex statistical models are applied, such as complex

time series models or neural networks with many parameters, the computational

complexity may increase drastically. Another point of concern is the huge number

of drill-down paths in OLAP if the number of dimensions and their depth increases.

The full tree of explanations can have P paths (Equation 2.10). In this case the

complexity is still linear in the size of the data set, but exponential in the number

and depth of the dimensions. However, this can be resolved by applying the specificity

heuristic (see RM2) such that in each step only the most specific dimension is selected

for explanation.

6.5 Case 3: Vehicle crime OLAP data

Here the methodology for explanation is used in a practical case study on vehicle

crime data. The analyses for this study are performed with the prototypical diagnostic

software (Section 6.4.4). The results of the study determine good threshold values for

significance levels in problem identification and fractions in explanation generation.

The research for this case study was carried out as part of the project PROTECT

(PROTECT 2006) and results were published in Caron and Veenstra (2007). This

project aimed to contribute to the knowledge and insight that improve the perfor-

mance of global supply chains in terms of their reliability. The study is performed on

multi-dimensional vehicle criminality data obtained from the Dutch Foundation for

Tackling Vehicle Crime (AVc 2006). The goal of the foundation is the reduction of

vehicle crime (e.g. theft and fraud) in the Netherlands by means of prevention and by

supporting public partners (e.g. police and insurance companies) in investigations.

An important way to support the tackling of vehicle crimes is to perform analyses on

vehicle crime data. At present, data analyses, mostly in the form of summary reports,

statistics and trends, are used by the foundation for the detection and prevention of
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vehicle crimes. If it is known, for example, how many cars and trucks are stolen

in certain locations, police can patrol more often in these areas. The vehicle theft

data set consists of records describing vehicle thefts in the period 1995 − 2004. In

the Netherlands approximately 30, 000 vehicles are stolen every year. The normal-

ized data set consists of 295, 291 records in the fact table and five dimension tables

describing hierarchies organized in a star schema, shown in Figure 6.22. In the di-

mension tables the numbers within brackets denote the cardinality of that level in

the dimension hierarchy.

Figure 6.22: Star model with five dimension tables and a central fact table.

6.5.1 Exception identification

In this data set, we detect and explain exceptional values, such as a region with a

relatively high number of vehicle thefts. Here we present an example of multi-level

explanation of a symptom in the dimension “Location vehicle stolen” of the data

cube under consideration. Suppose that an analyst starts exploring the context cube

Year × Postal code pos 1 for the measure # stolen vehicles. A postal code in The

Netherlands is composed of 4 digits and two alphabetic letters, for example, 1234 AB

is a postal code. Where the first digit represents the most global location and the

last letter character the most local location. An “?” indicates an aggregate at that
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position of the postal code. The expected values for this context cube are computed

with a main-effect ANOVA model, using Equation (3.3):

ŷ(Year,Postal code pos 1) = ȳ(Year,+) + ȳ(+,Postal code pos 1)− ȳ(+,+).

We write y for the measure # stolen vehicles. Here δ = 1.645 is determined as the

proper threshold value corresponding to a probability of .95 in the standard normal

distribution. The cells in Figure 6.23 represent the scaled residuals, expressed as

a percentage. The colored cells represent the identified symptoms for this context.

For example, the program singles out the cell (2004,3???), because the standardized

residual for the first position of the postal code “3???” in the year 2004 (= 2.7726)

is larger than the threshold. Therefore, problem identification labels this cell as

symptom ∂y12(2004,3???)=“high”.

Figure 6.23: Computed exceptional values (in %) and identified symptoms in the
context cube Year × Postal code pos 1.

6.5.2 Explanation generation

A full specification of the event to be explained is: 〈y(2004,3???), ∂# stolen vehicles

=“high”, ŷ(2004,3???)〉. Accordingly, the following business question is addressed:

“Why are the number of stolen vehicles in cell (2004, 3???) relatively high compared

with the expected value for this cell in the context cube under consideration?”

The algorithm is configured for one-step look-ahead. In addition, we omit insignificant

influences from the explanations to prevent the human analyst from an information

overload. After experimentation T+ = 0.80 and T− = −0.80 were determined as
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appropriate fraction for the data set. We explain in the “Location vehicle stolen”

dimension on the level “Postal code position 1”. The increase in the number of stolen

vehicles in the first digit of postal code region “3???” in The Netherlands is examined

on the second digit level of the postal code. Hence the first corresponding equation

used for explanation generation is (see Equation (2.12)):

y12(2001,Postal code pos 1) =
∑10

j=1
y13(2001,Postal code pos 2j).

The reference values for this equation are determined in the context cube Year ×
Postal code pos 1 with the two-way ANOVA model:

ŷ(Year,Postal code pos 2j) = ȳ(Year,+) + ȳ(+,Postal code pos 2j)− ȳ(+,+).

Therefore, y12(2001,3???) is the root of the explanation tree. The norm values

Table 6.11: Data for ∂y12(2004,3???)=“high”.

actual reference inf(y13, y12)

y(2004,3???) 7362 5411
y(2004,30??) 3154 1465 1689
y(2004,31??) 585 349 236
y(2004,32??) 254 219 35
y(2004,33??) 799 674 125
y(2004,34??) 418 411 7
y(2004,35??) 937 950 -13
y(2004,36??) 187 208 -21
y(2004,37??) 396 416 -20
y(2004,38??) 376 425 -49
y(2004,39??) 256 294 -38

for explanation generation are based on the expected values for the entries of the

dimension level Postal code pos 2 in the context Year × Postal code pos 2. Com-

putation of the influences of the individual variables for the additive equation above

with (4.4.1) yields the results in Table 6.11. From the data in this table it can be

concluded that Cbp = {y(2004,30??), y(2004,31??)}, since these two relatively large

causes explain the desired fraction of inf(C+, y(2004,3???)). The set of parsimonious

counteracting causes is given by Cap = {y(2000,36??), y(2000,37??), y(2000,38??),
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y(2000,39??)}. The parsimonious contributing causes are explained further on the

levels Postal code pos 3, Postal code pos 4, etc. One-level explanations are com-

Figure 6.24: Diagnosis for ∂# stolen vehicles(2004,3???) =“high” for dimension “Lo-
cation vehicle stolen”.

bined to a complete explanation for the dimension “Location vehicle stolen”. Figure

6.24 summarizes the results of the multi-level diagnosis in the form of an explana-

tion tree. The lines indicate parsimonious contributing causes, the numbers on the

lines indicate the relative values for the influence measures, and the ratios indicate

the specificity value of the explanation step. The specificity values are determined

using (4.22). For example, the explanation step on the Postal code pos 2 level is very

specific for postal codes “30??” and “31??”, because only 2 of the 10 possible causes

are required here to explain the desired fraction. In summary, the explanation tree

depicted in Figure 6.24 shows the analyst the set of regions, districts, streets, and

part of streets, that are identified as the largest causes in the dimension “Location

vehicle stolen”. Moreover, similar explanation trees can be constructed automatically

by the analyst for the hierarchies in the other dimensions. A comparison with model

results and human analyses showed a large correspondence. In this way the analyst

is assisted in processing and analysing large amounts of data.
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6.6 Case 4: Supermarket OLAP sales data

6.6.1 Sensitivity analysis in a system of drill-down equations

In this section, we apply what-if analysis software on an artificial supermarket sales

data in MS Access. The Foodmart data warehouse has 164, 558 records in the sales

fact table for the years 1997 and 1998 for supermarkets in North America, with

measures as sales, costs, revenues, units ordered, units shipped, total supply time,

average supply time. Typical dimensions are:

• Time with the hierarchy: Month ≺ Quarter ≺ Year;

• Store Region with the hierarchy: Store Name ≺ Store City ≺ Store Region ≺
Store Country ≺ Store Type;

• Product with the hierarchy: Product Name ≺ Brand Name ≺ Product Sub-

Category ≺ Product Category ≺ Product Department ≺ Product Family;

• Warehouse with the hierarchy: Name ≺ City ≺ State ≺ Country ≺ Type of

warehouse;

• etc.

Here we describe a what-if analysis on the cube C = 1998 × All-Stores × Product

Department × Type of Warehouse for the measure supply time (in days) denoted by

y, aggregated with the average function. The data of the cube is depicted in Figure

6.25. In this case we analyse a change with some δ in the cell c =(1998, All-Stores,

Alcohol Beverages, Large Independent) on its upset {↑ c}. The reference value of

the cell is given by yr(c) = 76 and the actual value is given by ya(c) = 76 + δ. The

changes in {↑ c} are computed by Equation (5.4) and given by:

• ya(1998, All-Stores, Drink, Large Independent)= yr(1998, All-Stores, Drink,

Large Independent) + 1
3
δ;

• ya(1998, All-Stores, Alcohol Beverages, Warehouse)= yr(1998, All-Stores, Al-

cohol Beverages, Warehouse) + 1
6
δ;
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Figure 6.25: Sensitivity analysis in the cube 1998 × All-Stores × Product Department
× Type of Warehouse for the average drill-down measure supply time (in days). Here
the value of the cell 1998 × All-Stores × Alcohol Beverages × Large Independent is
changed with δ and this change is propagated in the cell’s upset. The changed cells
are given a grey color in the cube.

• ya(1998, All-Stores, Drink, Warehouse)= yr(1998, All-Stores, Drink, Ware-

house) + 1
18
δ;

• ya(1998, All-Stores, All-Products, Large Independent)= yr(1998, All-Stores,

All-Products, Large Independent) + 1
23
δ;

• ya(1998, All-Stores, All-Products, Warehouse)= yr(1998, All-Stores, All-Pro-

ducts, Warehouse) + 1
138

δ.

Now consider the following case. Suppose that we want to decrease yr(1998, All-

Stores, Drink, Large Independent) with one day by inducing a change in yr(1998,

All-Stores, Alcohol Beverages, Large Independent). This is done by inducing δ = −3
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then ya(1998, All-Stores, Alcohol Beverages, Large Independent)= 73 and ya(1998,

All-Stores, Drink, Large Independent)= 258.

Sensitivity analysis in a system of business model equations is illustrated already

in Section 5.3. In Section 5.3.2 a typical example is given related to what-if analysis in

a system of business model and drill-down equations derived from a multi-dimensional

financial database (see Example 2.1.1). In Section 5.3.3, the alternative method for

what-if analysis is illustrated on the same database.

6.6.2 Software implementation

In this section, the most important concepts of the prototype software 4 for sensitivity

analysis in a multi-dimensional database are discussed. This section is largely based

on Caron and Daniels (2009) and Caron and Daniels (2010).

The prototype software is implemented in MS Excel and MS Access in combination

with Visual Basic. The software connects with an OLAP database in MS Access with

ODBC. In MS Excel a cube can be constructed from this database and inspected via

pivot tables. In a pivot table, the analyst can do what-if analysis on a specific cell,

by selecting the cell and pushing the analysis button.

If the analysis is started, the analyst can decide to change a cell in the pivot table

with some percentage or absolute value, see the screenshots of the GUI in Figure 6.26.

In the figure, the cell c =(2000.Q1, Mexico.Acapulco, Food) with the value 10, 820.89

for the measure store sales, in the context cube (2000.Quarter, Country.City, Food),

is changed with, for example, 10% by the analyst. The result will be that the original

cell value and its upset ↑ c are changed with that percentage. In the pivot table all

changed cells in the upset are automatically indicated with a color (Figure 6.27). In

the figure, for example, the parent of the cell c, the cell (2000.Q1, Mexico, Food), is

changed from 85, 520.91 to 86, 603, 00 in the what-if analysis.

After some actions the analyst can always return to the original situation because

all operations are executed on a virtual copy of the multi-dimensional database. Ob-

viously, in the software only the modified cell, in some cube in the lattice, and its

4We would like to thank the Wim Zuiderwijk and Arno van den Berg for their contributions to
the implementation of the software for sensitivity analysis in the OLAP context.
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Figure 6.26: GUI for sensitivity analysis in MS Excel. A 10% cell increase in
store sales(2000.Q1, Mexico.Acapulco, Food)= 10, 820.89 is analysed in the cube
2000.Quarter × Country.City ×. This change is automatically propagated in the
cell’s upset.

changed upset need to be stored for a single analysis.

6.7 Conclusion

In this chapter, we applied the concepts and techniques introduced in the previous

chapters in a number of case studies. The case studies showed that diagnosis in the

OLAP context has indeed useful business applications. We believe that the meth-

odology put forward and applied here, can be effectively employed in a wide range

of BI systems. Example applications are interfirm comparison Daniels and Caron

(2009), sales analysis Caron and Daniels (2007), crime analysis Caron and Veenstra

(2007), analysis of variance in accounting, and the generation of fish bone diagrams.

The method can also be used in a continuous auditing framework, the expected values

can be used as a benchmark and are compared with the actual values as described

in this thesis. Larger deviations serve as a trigger for audit activities in which case

the explanation method automatically generates important dimensions that can be
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Figure 6.27: Result of the what-if analysis in the cube 2000.Quarter × Country.City
× Food. Colors indicate the changed cells in the upset.

explored in further detail.

In Section 6.2 (Case 1), the look-ahead method for explanation is illustrated in a

case study on interfirm comparison. In the case study with cancelling-out effects it is

shown that the explanation method with the look-ahead procedure makes significant

hidden causes visible that would have been missed by the explanation methodology

of maximal explanation. In the implementation, special attention is given to presen-

tation of the program output, where symptoms and causes are presented graphically

as a tree of causes in GUI. In this manner, an analyst can view and access the results

of the explanation process for diagnosis of company performance as a compact tree.

In Section 6.3 (Case 2a) and Section 6.4 (Case 2b), the top-down, the greedy, and

the generic explanation method, are illustrated in a case study on the analysis of multi-

dimensional financial data. In Section 6.3 (Case 2a), it is shown that exceptional cell

values can be identified meaningfully in an OLAP cube with a statistical normative

model. Subsequently, an exceptional cell is explained with top-down explanations

over various paths in the cell’s downset by applying a number of suitable ANOVA

models.
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In Section 6.4 (Case 2b), it is shown that exceptional cell values can be identified

in an OLAP cube with a historic normative model. Subsequently, one of the excep-

tional cell values is explained with greedy explanation and we show that in this way

hidden causes are identified, that might be missed in top-down explanation (without

look-ahead). Finally, a generic explanation is given with greedy explanation for a

range of exceptional cells in a context cube. It is also demonstrated with our software

that our method is capable of assisting analysts in generating explanations for excep-

tional values in OLAP data. The results suggest that our method (semi-)automates

the current manual discovery process of problem diagnosis in OLAP databases. The

results also suggest that the explanation methodology could lead to improved man-

agerial decision-making based on OLAP business data, because it can make causes

visible, e.g. hidden causes, that might be missed in purely human analysis. Addi-

tionally, the results of this research can be used to develop professional diagnostic

software that can be integrated in existing OLAP systems.

In Section 6.5 (Case 3), the explanation methodology is demonstrated in a case

study describing the analysis of a real OLAP data set with vehicle criminality figures

in The Netherlands. In this study it is shown that our method is capable of assisting

analysts in generating explanations for exceptional values in multi-dimensional vehicle

criminality data.

In Section 6.6 (Case 4), an extension of the OLAP framework for sensitivity anal-

ysis is illustrated in a compact case study on the analysis of supermarket sales data.

By means of Theorem 5.2.1, we showed that there is an unique additive measure for

each cube in the lattice. This is the basis for what-if analysis, where a change in some

base cell in the lattice is propagated to all elements in its upset. We showed its work-

ing on a cube for the supermarket data set for an additive and an average measure.

Sensitivity analysis in a system of business or mixed equations is discussed in Section

5.3. In such systems what-if analysis is only possible when specific conditions are

satisfied. Finally a prototype software application for what-if analysis is described.

This application is an additional tool for business analysts wanting to analyse their

company data interactively. With this tool, they are able to ‘play’ with the OLAP

data by doing sensitivity analyses.
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Summary of the main results

In this chapter, we give a summary of the main findings for each chapter. Multi-

dimensional databases or OnLine Analytical Processing (OLAP) databases are a pop-

ular business intelligence technique in the field of business information systems for

analytics and decision support. Multi-dimensional databases are capable of captur-

ing the structure of business data in the form of multi-dimensional tables which are

also known as data cubes. Manipulation and presentation of information through

interactive multi-dimensional tables and graphical displays provide important sup-

port for the business decision-maker. The main goal of this dissertation is “to extend

the functionality of multi-dimensional business databases with diagnostic capabilities

to support managerial decision-making”. In this dissertation, the OLAP database

is indeed extended with novel functionality for the detection of exceptional values,

explanation generation, and sensitivity analysis. The purpose of the methods and

algorithms presented here, is to provide OLAP databases with more powerful ex-

planatory analytics and reporting functions.

In Chapter 1, a general introduction to the business intelligence framework and

the position of the OLAP database in this framework is provided. This is followed

by a description of diagnostic problem solving. After that the concepts of diagnosis

are introduced within the OLAP domain and its potential use is illustrated.

In Chapter 2, important concepts related to the OLAP database and model are

introduced and formalized. These concepts lay the foundation for our research ob-

jectives. We introduced a formal notation to express the internal structures of the

OLAP database: dimensions, dimension hierarchies, full cubes, subcubes, base cube,

195



196

top cube, cells, and measures. The notation is coupled with navigational operators

as roll-up and drill-down. The strength of the notation is that it can express both

OLAP components as basic mathematical relations. Furthermore, we defined the lat-

tice structure of all aggregation levels in the OLAP, obtained by aggregating a certain

measure y over all its dimensions and hierarchies. In the lattice the concept of an

analysis path is described. A path resembles the way a business analyst drills down

or rolls up cubes in an analysis. It is shown mathematically that OLAP databases

are often too large in practise to be analysed effectively, because of the large number

of cell contexts and lattice analysis paths. They both grow exponentially fast when

the number of dimensions and hierarchies increase. Finally, we use the notation to

discuss drill-down equations for a single measure and relations between multiple mea-

sures. Drill-down equations are formed by the application of an aggregation function

on a measure in the lattice from the base to the top. Relations between measures

are called business model equations. The result of this application is a system of

drill-down and/or business model equations. We can express both additive and non-

additive measures in our notation. For additive measures we show that the system of

drill-down equations is uniquely solvable.

In Chapter 3, a framework for the identification of exceptional values in OLAP

databases is developed. This provides the OLAP analyst the possibility to identify

regions of exceptions in an OLAP data cube during navigation. In this dissertation,

an exceptional value is defined as a value that is surprisingly high or low in rela-

tion to the other values, and therefore of potential interest to the business analyst

regardless of its cause. We use our notation to describe exception identification pro-

cess in OLAP databases. Moreover, it is shown that both managerial and statistical

normative models can be applied in OLAP databases as suitable reference classes.

Appropriate managerial models are: planning and budget models, historical models,

and extra/intra-organizational models. Two classes of appropriate statistical models

are described, multi-way ANOVA models for continuous OLAP data and contingency

table models for discrete OLAP data. It is found that for full-effects ANOVA models

the mean-based estimates are directly available in the cubes of the lattice. This is

explained by the concept of a complement cube. Finally, a general algorithm for ex-

ception identification in OLAP databases is proposed. In the case that this algorithm
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is configured to be used with a multi-way ANOVA model, a specific algorithm for

statistical model fitting can be applied to compute estimates for model coefficients.

Chapter 4 can be considered the core of this dissertation. In this part the OLAP

database is extended with the functionality to give computerized explanations for

surprising cell values. A general method that gives the OLAP analyst explanations

for significant decreases or increases in business measures, identified at an aggregated

level, is presented. This method for automated diagnosis is based on a generic expla-

nation formalism. Explanation generation is supported by the two internal structures

of the OLAP database: the dimension hierarchies and the business model. Therefore,

explanation methods are developed for finding significant contributing and counter-

acting causes in these structures. The methods described are based on an influence

measure, which can be considered to be a form of ceteris paribus reasoning. It is shown

that a valid interpretation of the influence measure is only possible if the consistency

and conjunctiveness constraint are satisfied. Moreover, it is shown that additive

functions and non-additive differentiable functions (where the identified difference is

relatively small) satisfy these constraints. The following methods for automated ex-

planation are presented: look-ahead, top-down, and greedy explanation. Look-ahead

explanation deals with the problem of potential cancelling-out effects. The method

enhances the original method of maximal explanation with look-ahead functionality

to detect hidden causes. The method is based on function substitution. Explanation

generation in this method is continued until a contributing cause cannot be explained

further. The result of the method is an explanation tree, where the main causes for

a surprising value are presented to the analyst. In addition, a top-down approach for

explanation in systems with both OLAP drill-down and business model equations,

and a greedy approach for explanation in systems that consist purely of drill-down

equations, are demonstrated. The greedy explanation method uses the transitivity

property which simplifies the explanation generation process. Furthermore, to pre-

vent an information overload to the analyst, several techniques are created to prune

the explanation tree. Appropriate pruning methods are: the identification of parsi-

monious causes, the selection of specific causes over general causes, the application of

heuristics that reduce the number of equations considered, the selection of only large

causes, and the reporting of generic explanations. Finally, to guarantee the correct



198

working of the explanation methods the consistency constraint has to be satisfied.

Basically, reference values are consistent if they satisfy the same equation as is given

for the actual values. For the various normative models we show under what con-

ditions the consistency constraint is satisfied. In particular, we proof that a special

class of additive ANOVA models produces consistent reference values, as opposed to

the general class of statistical models that do not produce such values.

In Chapter 5, the theoretical underpinnings under which sensitivity analysis is

valid in OLAP databases are dealt with. In this dissertation, sensitivity analysis is

considered to be the reverse of explanation generation in diagnostic reasoning. Our

exposition differentiates between sensitivity analysis in systems of purely drill-down

equation and mixed systems of equations with also business model equations. It is

proven that there is an unique additive drill-down measure defined on all cubes of the

aggregation lattice. This proof is the basis for sensitivity analysis in OLAP databases,

where a change in some base cell in the lattice is propagated to all descendants in

its upset. For sensitivity analysis in mixed systems of equations a matrix notation

is presented and the conditions for solvability are discussed. Due to the fact that

such systems are typically overdetermined in OLAP databases, the implicit function

theorem cannot be applied. Therefore, we proposed a method to reduce the number

of equations in the system and apply the implicit function theorem on a subsystem

of the original system. We conclude with an alternative method for what-if analysis

in mixed systems of equations.

In Chapter 6, it is shown that our methodology has a wide range of business appli-

cations, such as variance analysis in accounting, competition benchmarking, analysis

of sales and financial data, and the analysis of any other data that possess a multi-

dimensional hierarchical structure. The methodology is demonstrated in several case

studies. In Case 1, the applicability of the look-ahead method for explanation is

illustrated in a study on interfirm comparison. In this study it is shown that the

explanation method with the look-ahead procedure makes significant hidden causes

visible that would have been missed by the maximal explanation methodology In the

software implementation of the method, special attention is given to presentation of

the program output, where symptoms and causes are presented graphically as a tree

of causes in the GUI. In this manner, an analyst can view and access the results
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of the explanation process for diagnosis of company performance as a compact tree.

The top-down, the greedy, and the generic explanation method, are illustrated in a

case study on the multi-dimensional analysis of financial data. In the study, first

exceptional cells are identified with various normative models and after that these

cells are explained with the explanation methods. In Case 2a, it is shown that excep-

tional cell values can be identified meaningfully in an OLAP cube with a statistical

normative model. Subsequently, an exceptional cell is explained with top-down ex-

planations over various analysis paths in the cell’s downset by use of a number of

suitable ANOVA models. In Case 2b, it is demonstrated that exceptional cell values

can be identified in an OLAP cube with a historic normative model. Subsequently,

one of the exceptional cell values is explained with greedy explanation and it is shown

that in this way hidden causes are identified, that might be missed in top-down ex-

planation (without look-ahead). The results from the case studies suggest that our

method (partly) automates the current manual discovery process of problem diagno-

sis in OLAP databases. This is clearly an advantage because the human analysis of

OLAP data can get tedious and error-prone, especially when the data set is large.

Our explanation methodology could lead to improved managerial decision-making

based on OLAP business data. Moreover, in Case 3, it is shown that our method

is capable of assisting analysts in generating explanations for exceptional values in

multi-dimensional vehicle criminality data. Finally, in Case 4, an extension of the

OLAP framework for sensitivity analysis is illustrated in a compact case study on the

analysis of supermarket sales data. We demonstrate what-if analysis on a cube for

the supermarket data set for an additive and an average measure. Sensitivity analysis

in a system of business or mixed equations is discussed in Chapter 5, where also an

illustative example is presented. In such systems what-if analysis is only possible

when specific conditions are satisfied.

The dissertation concludes with a number of appendices that give background

information. In Appendix A, an overview is given of computer-based diagnosis in

various application domains. In Appendix D, the mathematics in matrix notation

are given for a system of implicit drill-down equations. As far as we know, this has

never been pointed out in the existing literature. Subsequently, the notation is used

systems of drill-down equations to prove solvability and uniqueness of solutions.



Nederlandse Samenvatting
(Summary in Dutch)

Dit proefschrift gaat over het verklaren van exceptionele waarden in multi-dimensio-

nele of OnLine Analytical Processing (OLAP) bedrijfsdatabanken. OLAP-databases

zijn een populaire business intelligence techniek op het gebied van bedrijfsinfor-

matiesystemen. De parapluterm ‘business intelligence’ staat voor combinaties van

methoden, processen, technieken en toepassingen, welke nodig zijn om ruwe bedrijfs-

data om te vormen tot bruikbare informatie en kennis in bedrijven en organisaties.

OLAP-databases representeren data in de vorm van datakubussen. Het exploreren

van multi-dimensionele gegevens in deze kubussen door een analist is relatief een-

voudig omdat de software gebruik maakt van interactieve operatoren en grafische

displays. Het doel van dit proefschrift is om diagnostische functionaliteit voor het

maken van verklarende analyses in OLAP-databases te brengen en om zo te komen

tot betere bestuurlijke beslissingsondersteuning. De functionaliteit wordt uitgebreid

met automatische methoden voor de detectie en het verklaren van exceptionele waar-

den en gevoeligheidsanalyse.

In hoofdstuk 1 wordt een algemene introductie tot het business intelligence raam-

werk gegeven en de positie van OLAP binnen dit raamwerk wordt uitgelegd. Daarna

volgt een uitleg van de belangrijkste concepten van automatische diagnose. Vervolgens

worden deze concepten gëıntroduceerd in het domein van OLAP-databases, en het

mogelijke nut daarvan voor de bedrijfsanalist wordt gëıllustreerd.

In hoofdstuk 2 worden de belangrijkste concepten van het OLAP-database model

besproken en geformaliseerd. Deze concepten leggen de basis voor onze onderzoeks-

doelstelling. Een formele notatie om de interne structuren van een OLAP-database

uit te drukken wordt voorgesteld. In deze notatie kunnen OLAP concepten zoals:

200
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dimensies, dimensiehiërarchieën, volledige kubussen, deelkubussen, basiskubus, top-

kubus, cellen, en meetwaarden eenvoudig worden beschreven. Daarnaast kunnen

ook navigatie-operatoren binnen OLAP, zoals ‘roll-up’ en ‘drill-down’ in de notatie

beschreven worden. De kracht van de notatie is gelegen in het feit dat de notatie zowel

overweg kan met OLAP concepten als met wiskundige relaties. Vervolgens wordt er

een roosterstructuur voor alle aggregatieniveaus in een OLAP-database gedefinieerd.

Dit rooster wordt verkregen door een bepaalde meetwaarde y over alle mogelijke di-

mensies en hiërarchieën te aggregeren. In het rooster wordt het idee van een analyse

pad uitgelegd. Een analyse pad geeft aan hoe een analist de operatoren ‘drill-down’

en ‘roll-up’ kan gebruiken in een analyse. Wiskundig wordt uitgelegd dat OLAP-

databases in de praktijk vaak te groot zijn om goed te worden geanalyseerd. Dit

komt omdat een cel in een kubus in veel contexten kan worden bekeken en dat er

vanuit een cel veel mogelijke analysepaden zijn. Beide groeien exponentieel als het

aantal dimensies en hiërarchieën toeneemt. Als laatste gebruiken we de notatie om

‘drill-down’ vergelijkingen voor een enkele meetwaarde en relaties tussen meetwaar-

den te bespreken. De ‘drill-down’ vergelijkingen worden gevormd door het toepassen

van een aggregatiefunctie op een meetwaarde vanaf de basis van het rooster tot de

top. Het resultaat van deze toepassing is een systeem van ‘drill-down’ vergelijkingen.

Relaties tussen meetwaarden worden bedrijfsmodelvergelijkingen genoemd. Zowel

additieve als niet-additieve meetwaarden kunnen worden beschreven. Voor additieve

meetwaarden tonen we aan dat een systeem van drill-down meetwaarden uniek oplos-

baar is.

In hoofdstuk 3 wordt een raamwerk voor het bepalen van exceptionele waar-

den in een OLAP-database ontwikkeld. Dit raamwerk geeft de OLAP analist de

mogelijkheid om regio’s van opvallende waarden op te sporen tijdens een analyse.

Deze opvallende waarden kunnen mogelijk wijzen op nieuwe bedrijfskansen of naar

specifieke problemen. Een exceptionele waarde wordt gezien als een verrassend hoge

of lage waarde voor een cel ten opzichte van andere cellen in de kubus. Er wordt

aangenomen dat de verrassende celwaarde interessant is voor de analist onafhanke-

lijk van de mogelijke oorzaak. In dit hoofdstuk gebruiken we notatie van het vorige

hoofdstuk om het proces van opsporen van exceptionele cellen in detail te beschrij-

ven. Vervolgens wordt aangetoond dat zowel bestuurlijke- als statistische modellen
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toegepast kunnen worden als geschikte referentieklassen binnen de OLAP context.

Geschikte bestuurlijk modellen zijn: planning- en budgetmodellen, historische mo-

dellen en extra/inter-organisatiemodellen. Twee klassen van geschikte statistische

modellen worden in detail beschreven, dit zijn ‘multi-way ANOVA’ modellen voor

continue OLAP data en ‘contingency table’ modellen voor discrete OLAP data. Het

blijkt dat voor ‘full-effects’ ANOVA modellen de schatters, welke op gemiddelden zijn

gebaseerd, direct beschikbaar zijn in de kubussen van het rooster. In een voorbeeld

wordt aangetoond dat verschillende ANOVA modellen verschillende sets van uitzon-

derlijke waarden kunnen geven. Tot slot wordt een algemeen algoritme voor exceptie

identificatie in OLAP-databases voorgesteld. In het geval dat dit algoritme is gecon-

figureerd voor gebruik met een multi-way ANOVA model, kan een specifiek algoritme

worden toegepast om de modelcoëfficiënten berekenen.

Hoofdstuk 4 kan worden beschouwd als de kern van dit proefschrift. In dit deel

wordt de OLAP-database daadwerkelijk uitgebreid met de functionaliteit om geau-

tomatiseerd verklaringen voor opvallende celwaarden te geven. Een algemene metho-

de, die de OLAP-analist verklaringen geeft voor significante dalingen of stijgingen in

meetwaarden op een geaggregeerd niveau, wordt voorgesteld. Deze methode voor au-

tomatische diagnose is gebaseerd op een algemeen verklaringsformalisme. Het geven

van verklaringen wordt ondersteund door twee interne structuren van de OLAP-

database: de dimensiehiërarchieën en het bedrijfsmodel. Er worden specifieke verkla-

ringsmethoden voorgesteld voor het vinden van bijdragende en tegengestelde oorza-

ken in deze structuren. Al deze methoden zijn gebaseerd op een ‘maat van invloed’.

Deze maatstaf kan worden beschouwd als een vorm van ceteris paribus redeneren. In

het proefschrift wordt aangetoond dat een geldige interpretatie van deze maat van in-

vloed alleen mogelijk is als aan restricties voor consistentheid en conjunctie is voldaan.

Zowel additieve als niet-additieve differentieerbare functies (onder de voorwaarde dat

het gëıdentificeerde verschil relatief klein is) voldoen aan deze restricties. De volgende

methoden voor het genereren van verklaringen en hun eigenschappen worden gepre-

senteerd: ‘look-ahead’, ‘top-down’ en ‘greedy’. De look-ahead methode behandelt het

probleem van elkaar opheffende effecten. Deze methode verbetert de oorspronkelijke

methode van maximale verklaringen door dieper te kijken in het bedrijfsmodel om

zo mogelijke verborgen oorzaken te vinden. De ‘look-ahead’ methode is gebaseerd op
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functie-substitutie. Het geven van verklaringen door deze methode wordt voortgezet

totdat een bijdragende oorzaak niet verder kan worden ontwikkeld. Het resultaat

van de verklaringsmethode is een verklaringsboom, waarin de belangrijkste oorzaken

voor een exceptionele waarde worden gepresenteerd aan de analist. De ‘top-down’

verklaringsmethode kan gebruikt worden in systemen met zowel ‘drill-down’ als be-

drijfsvergelijkingen. De ‘greedy’ verklaringsmethode werkt in systemen met alleen

‘drill-down’ vergelijkingen. Deze methode maakt gebruik van een transitiviteitseigen-

schap, welke het genereren van verklaringen eenvoudiger maakt. Om de analist te

beschermen tegen teveel informatie afkomstig uit de verklaringsmethode, wordt een

aantal technieken voorgesteld om de verklaringsboom te snoeien, om zo alleen de

belangrijkste oorzaken aan de analist aan te bieden. Geschikte snoeimethoden zijn:

het vaststellen van de significante oorzaken, de selectie van specifieke oorzaken boven

algemene oorzaken, het toepassen van heuristieken welke het aantal vergelijkingen in

de analyse vermindert, de selectie van alleen grote oorzaken en het rapporteren van

generieke verklaringen. Om de correcte werking van de verklaringsmethoden te garan-

deren moet aan de consistentie-eis voldaan zijn. Referentie waarden zijn consistent

als ze aan de dezelfde vergelijking voldoen als gegeven voor de actuele waarden. Voor

de besproken normatieve modellen laten we zien onder welke condities ze voldoen

aan deze eis. In het bijzonder tonen we aan dat onder bepaalde voorwaarden addi-

tieve ANOVA modellen consistente ketens referentie waarden geven. In het algemeen

produceren statistische modellen geen consistente ketens van referentiewaarden.

In hoofdstuk 5 wordt de theoretische basis voor gevoeligheidsanalyse in OLAP-

databases besproken. Hier wordt gevoeligheidsanalyse beschouwd als het omgekeerde

van het genereren van een verklaring in de context van diagnostisch redeneren. Gevoe-

ligheidsanalyse wordt besproken in stelsels met alleen drill-down vergelijkingen en in

stelsels met zowel drill-down als bedrijfsmodelvergelijkingen. In dit hoofdstuk wordt

bewezen dat er een unieke additieve drill-down measure kan worden gedefinieerd op

alle kubussen van het rooster. Dit bewijs is de basis voor gevoeligheidsanalyse in

OLAP-databases, waar een verandering in een basiscel wordt gepropageerd naar al

zijn afstammelingen in de bovenliggende structuur. Voor gevoeligheidsanalyse in

gemengde stelsels van vergelijkingen wordt een matrixnotatie voorgesteld. In deze

notatie worden de voorwaarden voor oplosbaarheid van deze stelsels besproken. Deze
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stelsels zijn doorgaans overgedetermineerd zodat de impliciete functie stelling niet

kan worden toegepast. Daarom wordt een methode voorgesteld om het aantal ver-

gelijkingen in het systeem te verminderen en de impliciete functie stelling toe te

passen op een subsysteem van het oorspronkelijke systeem. Het hoofdstuk wordt

afgesloten met een voorstel voor een alternatieve methode voor gevoeligheidsanalyse

in gemengde stelsels.

In hoofdstuk 6 wordt getoond dat onze methodologie een breed scala van toepas-

singen heeft, zoals variantie-analyse in accountancy, het vergelijken van de prestaties

van ondernemingen, de analyse van verkoopdata en financiële gegevens, en de analyse

van alle andere gegevens die beschikken een multi-dimensionele hiërarchische struc-

tuur. De methodologie wordt toegepast in een aantal casestudy’s. In case study 1

wordt de ‘look-ahead’ methode gebruikt in een studie waarin bedrijven met elkaar

worden vergeleken om inzicht te geven in hun prestaties. De gegevens zijn afkomstig

uit de productiestatistieken van het Centaal Bureau voor de Statistiek. In deze studie

wordt aangetoond dat de ‘look-ahead’ methode, significante verborgen oorzaken zicht-

baar kan maken, welke gemist zouden zijn door de klassieke methode van maximaal

verklaren. In de software-implementatie van de methode, wordt speciale aandacht

besteed aan de presentatie van het programma-uitvoer, waar de oorzaken van opval-

lende waarden worden voorgesteld als een boom van oorzaken in de grafische gebruik-

ersinterface. Op deze wijze, kan een analist de resultaten van het verklaringsproces,

ten behoeve van het maken van bedrijfsvergelijkingen, eenvoudig bekijken in de vorm

van een compacte boom. De ‘top-down’, de ‘greedy’ en de generieke verklaringsme-

thode, worden gëıllustreerd in een case study over de multi-dimensionele analyse van

financiële gegevens. In de studie, worden eerst opvallende cellen gëıdentificeerd met

gebruik van normatieve modellen, daarna worden deze opvallende cellen verklaard

met de verschillende verklaringsmethoden. In case study 2a wordt aangetoond dat

met een statistisch model op een zinvolle manier opvallende cellen kunnen worden

opgespoord in een datakubus. Vervolgens worden verklaringen gegeven voor een op-

vallende celwaarde met de ‘top-down’ methode, configureerd met ANOVA modellen

als normatief model, toegepast op verschillende analysepaden van nakomelingen van

de betreffende cel. In case study 2b wordt gedemonstreerd hoe exceptionele celwaar-

den kunnen worden bepaald in een OLAP kubus met een historisch normatief model.
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Daarna wordt één van de opvallende celwaarden verklaard met de ‘greedy’ methode

en wordt getoond dat op deze manier verborgen oorzaken zichtbaar gemaakt kunnen

worden, welke gemist zouden zijn door het puur toepassen van de ‘top-down’ me-

thode (zonder ‘look-ahead’). De resultaten van de case studies suggereren dat onze

methode het huidige handmatige ‘verklarende analyseproces’ van datakubussen deels

kan automatiseren. Dit is duidelijk een voordeel, omdat de handmatige analyse van

OLAP-gegevens met het oog veel tijd kost en foutgevoelig is, vooral als de datakubus

erg groot is. Het praktische gebruik van de verklaringsmethode zou kunnen leiden

tot betere bestuurlijke besluitvorming op basis van OLAP gegevens.

Het proefschrift sluit af met een aantal bijlagen die achtergrondinformatie geven.

In appendix A wordt een overzicht gegeven van computergebaseerde diagnose in ver-

schillende toepassingsdomeinen. In appendix D, wordt de wiskunde in matrixnotatie

gegeven voor een systeem van impliciete ‘drill-down’ vergelijkingen. Voor zover wij

weten, is zo’n notatie nooit eerder naar voren gebracht in de literatuur. Vervolgens

wordt de notatie gebruikt om te bewijzen dat systemen van zulke vergelijkingen een

unieke oplossing hebben.
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Appendix A

Overview of computer-based
diagnosis

The field of AI research has paid much attention to the formalisation and automation

of diagnostic reasoning for decision support in the past (Console and Torasso 1989;

de Kleer and Williams 1992; de Kleer et al. 1992; Lucas 1997; Reiter 1987). The

main aspects in computer-based diagnosis are (Verkooijen 1993):

• How is the “understanding” of the system formalized and represented? (the

knowledge representation formalism);

• What diagnostic reasoning methods are applied to explain discrepancies given

a specified domain formalisation? (the diagnostic reasoning method).

Obviously, these two aspects are connected; a diagnostic reasoning method cannot be

chosen independently of the knowledge representation formalism.

The type of knowledge representation formalisms for the underlying system de-

termine the main classification of the kinds of reasoning methods applied. A classi-

fication that is often made is the distinction between rule-based diagnostic systems

and model-based diagnostic systems. Many researchers have discussed the differences

between these systems (Console and Torasso 1989; Davis and Hamscher 1988). For

diagnosis in the domain of multi-dimensional databases only model-based diagnosis is

relevant because of the type of knowledge that is available in the database structures.
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Model-based diagnosis became a research topic in AI research around 1980 as an

attempt to address shortcomings (e.g. the knowledge elicitation problem, unsatis-

factory explanation capabilities, and brittle problem solving) of the contemporary

generation of rule-based diagnostic systems. Therefore, a new type of diagnosis sys-

tem evolved that did not include heuristics about symptoms and diagnosis, but relied

on basic knowledge of the domain. A diagnosis system of this type is called model-

based, because it has an explicit model of the diagnosis system, which describes the

system (de Kleer and Williams 1992). The term deep knowledge is used for knowledge

that describes characteristic aspects of the system at a certain level of abstraction.

Among them are models of structural, topographical, functional, or behaviourial sys-

tem features. An important assumption in model-based diagnosis is that “shallow”

expert rules usually turn out to be specialized pre-compiled statements that are, in

fact, derivable from the underlying theory (Feelders 1993). In model-based diagnosis,

however, the underlying theory is explicitly modelled in the program (Apte and Hong

1986; Chandrasekaran and Mittal 1984). In general, this approach leads to better

explanation capabilities and more robust problem solving behaviour. A model-based

diagnosis system usually applies a general algorithm to find a diagnosis.

Two important properties tend to characterize model-based reasoning according

to Hamscher (1992): an emphasis on categorical knowledge and separation of domain

knowledge from problem-solving knowledge. The content of the knowledge base in

a model-based system tends to concern categorical causes and effects rather than

probabilistic associations among problem features. Model-based systems aspire to

use general-purpose models. They achieve an even stricter separation between what

is known from how the knowledge will be used, than the comparable situation found

in typical rule-based systems. These properties mean that most research in this area

is grounded in physics and medicine, and thereby inherits three common attributes.

First, systems that consist of decomposable structures and constrained interactions

between the elements of those structures. Second, the diagnosis task to be performed

reduces to making and evaluating predictions about the evolution of the aggregate

states of such decomposable structures. Third, predictions are made for a virtually

closed system whose initial state and all relevant subsequent exogenous influences are
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knowledgeable. Although the literature contains exceptions, these properties charac-

terize the majority of the research (Weld and de Kleer 1990; Williams and de Kleer

1991).

The ability to model is a condition for the application of model-based diagno-

sis methods. Typically, these methods makes use of the following types of models

representing structural or causal information of the system (Feelders 1993):

• a structural model contains information about the structure and correct func-

tional behaviour of the system’s components and its interactions;

• a causal model consists of cause-effect relationships between elements that are

important for the description of the system’s behaviour.

The formal theories of computer-based diagnosis and explanation, described in the

previous parts, have no inherent relationships to certain application domains. AI re-

search on diagnostic reasoning has almost exclusively been concerned with the medical

and the physical domain, and scarcely to the domain of business and management.

An extensive comparison is available regarding these three traditional application

domains (Courtney et al. 1987; Feelders 1993; Verkooijen 1993). The objective of

this thesis is to provide a formalisation of diagnostic problem-solving in the relatively

new application domain of multi-dimensional business databases. For this purpose

the main characteristics of diagnostic problem-solving in the traditional application

domains are discussed briefly in order to create points of comparison with diagnosis

in multi-dimensional databases. Diagnosis in the domain of business and manage-

ment is discussed in Section 4.8. The results from the comparison serve as a basis for

knowledge representation and diagnostics in multi-dimensional databases.

A.1 Diagnosis in the physical domain

Consistent with the general diagnosis task in figure 1.2, the model-based approach

to diagnosis of a technical device (e.g. electronic circuit, car, DVD-player, etc.)

is based on a comparison of an incorrect device and a representation of an ideal

(correct) device. The actual behaviour of the device is typically observed by means
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of input/output measurement. In the domain of diagnosis of technical devices, there

are logical theories of diagnosis. These theories assume the availability of a logical

description (model) of the structure of the system to be diagnosed, and of the normal

behaviour and interactions of its components. The model of the device can make

predictions about its intended behaviour. Discrepancies between observation and

prediction are due to a defect in the device. The diagnostic objective is to locate

defective components in a way that explains the discrepancies. The usual therapy is

to replace the defective component. Three well-know diagnostic systems for diagnosis

in the physical domain are Sherlock and GDE by de Kleer and Williams (1989) and

de Kleer and Williams (1992), and DART by Genesereth (1984).

A.2 Diagnosis in the medical domain

Discovering what is wrong in a patient with particular symptoms and signs, i.e.

diagnosis, is the usual starting point in a medical decision process. It is, therefore,

not surprising that automated medical diagnosis was one of the first research fields of

AI (Lucas 1997). In general, the impact of rule-based diagnostic systems on AI has

been large. Examples are MYCIN (Shortliffe 1976) for the diagnosis and treatment of

bacterial infections, and INTERNIST-1 (Miller et al. 1982) as an expert consultant

program for diagnosis in general internal medicine.

In line with the general diagnosis task, in medical diagnosis the underlying system

is the human body or some specific part of it. Medical knowledge about this system

is incomplete, although particular subsystems may be well understood. Normal be-

haviour is often not precisely defined. In general, one makes use of the behaviour

which is observed most frequently in practice, a kind of average behaviour. The pres-

ence of a particular disease usually serves as an explanation for the set of observed

symptoms. Directly after the diagnosis hypothesis the therapy is started, based on

this hypothesis, and the appropriate medical treatment is given.
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A.3 Comparison and evaluation

Managerial problem diagnosis (Bouwman 1983) differs from diagnosis in other do-

mains because the managerial problem domain is not as structured as many other

problem domains. As opposed to problem domains such as engineering, mathematics,

or electrical circuit design, the managerial problem domain is not governed by well

formulated relationships. Although specific areas of management may be well struc-

tured, such as, sales, accountancy, and financial models. Furthermore, in automated

business diagnosis the system, in contrast to the previous systems, is not tangible,

in the sense of physical components (Verkooijen 1993). For example, the financial

statements are an abstraction of the underlying financial process. The financial items

do not have a prescribed functional behaviour as, for example, the components of a

technical device, or the organs of the human body. They represent the input they

receive from other financial items or from the financial environment.

In the domain of business the application of diagnosis from a structural model is

nearly impossible. For example, in the financial domain, it would be far too complex

to describe the structure and behaviour of the system in the form required by first

principle approaches. Therefore, as in Feelders and Daniels (2001), a causal view of

explanation is taken that is able to deal with quantitative and qualitative phenomena

that pervade the domain of business, finance, and management. This causal model

should capture the underlying cause-effect relations of the managerial problem do-

main. In fact a similar approach is taken as Courtney et al. (1987). It describes a

managerial diagnosis system based on a causal model in terms of economic variables

and their influence relations.

In the previous two sections and Section 4.8, we have reviewed the problem of au-

tomated diagnosis and explanation in several domains. Although in all domains the

global idea of diagnosis is the same, i.e. explaining unexpected behaviour of a system,

it has become clear that each domain has its own characteristics. A characteristic

that all systems have in common is that they are model-based. From a reasoning

viewpoint Feelders notices two major differences (Feelders 1993). Firstly, a situation

of incomplete information is presupposed in technical and medical diagnosis, whereas

this is generally not the case in diagnosis in the business domain. In the latter domain
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there is usually complete information about actual and norm values of variables in

the business model. And the problem of diagnosis is reduced to selecting relevant

influences from the available information. This problem is addressed in the work

of Kosy and Wise (1984), Kosy (1989), Courtney et al. (1987), Mohammed et al.

(1988), Feelders (1993), and Feelders and Daniels (2001). If not all actual and norm

values are known, the problem of diagnosis is one of finding consistent hypotheses.

Secondly, the difference between the business domain on the one hand and the medi-

cal and technical domain on the other hand is that their objects of comparison do not

change over time, whereas in the business domain the proper object of comparison

constantly changes. It entails that a company’s performance may be considered sat-

isfactory this year, whereas the same performance is considered mediocre for the next

year, simply because the object of comparison has changed, due to macro-economic

developments (Feelders 1993). In addition, in the business domain often multiple

objects of comparison are applied at the same time because they are all important for

managerial decision-making. For example, a company’s performance of the current

year is compared to its performance in the previous year and at the same time the

company’s performance is benchmarked against its competitors.

The objective for describing the diagnostic process in such different domains was

two-fold. Firstly, to position and compare diagnosis in the domain of business and

management between the more traditional fields of diagnosis. We agree with Feelders

(1993) that it difficult to transfer reasoning and knowledge representation from the

traditional fields of diagnosis to the domain of DSS’s for business and management.

Secondly, to introduce the concept of diagnosis in a special class of DSS’s, namely

OLAP databases. In this thesis we show that OLAP databases are an appropriate

domain for model-based diagnosis. Furthermore, it is shown that diagnosis in these

databases requires a knowledge representation formalism and diagnostic reasoning

methods that resembles diagnosis in quantitative financial models. In conclusion,

we summarize in Table A.1 the main characteristics of model-based diagnosis in the

different application domains.
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Table A.1: Model-based diagnosis in four application domains

Technical Medical
Business

and
management

Multi-
dimensional
databases

Diagnosis
objective

Locate minimal
set of faulty
components

Find minimal set
of causes (the

disease)

Explain devia-
ting behaviour of

financial
indicators

Explain
deviating cells in

data cube

Actual system Description of
the internal
structure and

behaviour of the
device

Causal model the
human body
with medical
knowledge

Financial
statements or
processes of the

firm

Multidimensional
database with
measures,

dimensions, and
hierarchies

Example
system

DVD-player, car,
computer, robot,

etc.

Model of the
heart, lungs, etc.

Sales model, in-
come statements,
balance sheets,

etc.

Multidimensional
sales data,

socio-economic
data, etc.

System
understanding
(normative
model)

Representation of
an ideal (correct)

device

The healthy
human organism

Historical,
planning, inter-

and intra-
organizational

models

Managerial nor-
mative models
and various sta-
tistical models

Example
symptom

Defective
component

Patient has high
temperature and

fever

Net sales of firm
have gone down
compared with

last year

Exceptional cell
value in context
of sales data

cube
Knowledge

representation
Structural Causal Causal Structural and

Causal
Diagnostic
systems

DART
(Genesereth

1984), Sherlock
(de Kleer and
Williams 1989),

and GDE
(de Kleer and
Williams 1992)

MYCIN
(rule-based)

(Shortliffe 1976)
and INKBLOT
(Citro et al.

1997)

DSS’s for
business
diagnosis

(Courtney et al.
1987; Hamscher
1994; Feelders
and Daniels
2001; Daniels

and Caron 2009)

iCube and iDiff
(Sarawagi et al.
1998; Sarawagi
2001), and
OLAP

explanatory
analytics (Caron

and Daniels
2007; Caron and
Daniels 2013)



Appendix B

Model and data for case study 1

B.1 Data for interfirm comparison

The meaning of the variables for interfirm comparison at Statistics Netherlands are

described in this Appendix in detail. The variable descriptions in English have been

translated from the original Dutch surveys. In addition, in Table B.1 the complete

data set for interfirm comparison of the ABC-company is given.

Result variables:
r1: total result before taxation
r2: total operating results
r3: total financial results
r4: total results allowances
r5: total extraordinary results
r6: total operating revenues
r7: total operating costs
r8: financial revenues
r9: financial expenses
r10: additions to allowances
r11: deductions from allowances and provisions released
r12: extraordinary profits
r13: extraordinary losses

Revenue variables:
r14: total additional revenues
r15: total net sales
r16: allowances for secondment
r17: activated production for own company

214
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r18: subsidies and restitutions
r19: received payments of damages
r20: other additional revenues
r21: net sales main activity of company
r22: net sales other activities

Cost variables:
r23: cost of goods sold
r24: total costs of labour
r25: total additional personnel expenses
r26: total costs of transportation
r27: total costs of energy
r28: total housing costs
r29: total cost of production machines, equipment, and office equipment
r30: total selling expenses
r31: total costs of communication
r32: total cost of third party professional services
r33: total other operations costs
r34: depreciations on tangible and intangible fixed assets

r35: costs of commodity goods sold
r36: other costs of goods sold

r37: gross wages and salaries
r38: employer’s part of social security insurance
r39: pensions
r40: other social security contributions

r41: payments to temporary workers
r42: payments to other temporary workers
r43: training costs
r44: other personnel expenses

r45: costs of leasing/renting means of transportation
r46: costs of maintenance for means of conveyance
r47: costs of fuel
r48: ownership tax
r49: insurance premiums for means of conveyance
r50: other costs of transportation

r51: costs of natural gas
r52: costs of electricity
r53: other costs of energy (excluding fuels)

r54: costs of leasing/renting land and buildings
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r55: maintenance/repairs land and buildings
r56: costs of cleaning land and buildings
r57: environment tax
r58: property tax
r59: insurance premium for building and contents assurances
r60: other housing costs

r61: renting/leasing machines, equipment, installations, and office equipment
r62: maintenance of machines, equipment, installations, and office equipment
r63: other costs machines, equipment, installations, and office equipment
r64: advertising and promotion expenses
r65: commissions for agents
r66: travelling, accommodation and representation costs
r67: research and development costs
r68: other selling expenses

r69: banking business
r70: other insurance premiums
r71: accountancy, juridical, economical, tax advice
r72: third-party services for automation and computerization
r73: refuse and waste processing
r74: other third-party costs for professional services

r75: licenses, royalties, copyright
r76: intra concern/administrative costs
r77: stationary, contributions, subscriptions, specialist literature
r78: other costs for renting/leasing (not mentioned elsewhere)
r79: other maintenance/reparation costs (not mentioned elsewhere)
r80: other cost price increasing taxes (not mentioned elsewhere)
r81: other general costs (not mentioned elsewhere)
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Table B.1: Actual, norm, influence, and difference values for the ABC-company.

actual norm inf(xi, y) diff. %

r1 61.75 11.30 446.46
r2 60.42 14.79 45.62 308.52
r3 1.33 -2.55 3.88 -152.16
r4 0.00 -0.15 0.15 -100.00
r5 0.00 -0.79 0.79 -100.00
r6 329.50 308.64 20.86 6.76
r7 269.09 293.84 24.76 -8.42
r8 11.17 1.84 9.33 507.07
r9 9.83 4.39 -5.44 123.92
r10 0.00 0.16 0.16 -100.00
r11 0.00 0.01 -0.01 -100.00
r12 0.00 0.31 -0.31 -100.00
r13 0.00 1.10 1.10 -100.00
r14 4.92 1.54 3.38 220.06
r15 324.58 307.10 17.48 5.69
r16 0.00 0.22 -0.22 -100.00
r17 0.00 0.00 0.00 0.00
r18 2.33 0.35 1.98 559.19
r19 0.00 0.26 -0.26 -100.00
r20 2.58 0.70 1.89 270.91
r21 324.58 304.42 20.16 6.62
r22 0.00 2.68 -2.68 -100.00
r23 181.42 178.30 3.12 1.75
r24 64.00 56.42 7.58 13.43
r25 0.42 3.61 -3.19 -88.37
r26 0.50 1.71 -1.21 -70.76
r27 1.92 2.27 -0.36 -15.42
r28 2.17 18.47 -16.31 -88.25
r29 0.33 0.67 -0.34 -50.75
r30 8.42 11.99 -3.57 -29.77
r31 1.00 0.98 0.02 2.04
r32 3.50 4.39 -0.89 -20.27
r33 1.42 5.00 -3.59 -71.60
r34 4.00 10.04 -6.04 -60.16
r35 181.42 177.69 3.73 2.10
r36 0.00 0.61 -0.61 -100.00
r37 53.50 45.93 7.57 16.49
r38 6.83 6.17 0.66 10.76
r39 3.50 2.95 0.55 18.78
r40 0.17 2.95 -1.21 -87.93
r41 0.00 0.36 -0.36 -100.00

actual norm inf(xi, y) diff. %

r42 0.00 0.51 -0.51 -100.00
r43 0.17 0.12 0.05 44.29
r44 0.25 2.62 -2.37 -90.47
r45 0.00 0.62 -0.62 -100.00
r46 0.00 0.16 -0.16 -100.00
r47 0.00 0.33 -0.33 -100.00
r48 0.00 0.06 -0.06 -100.00
r49 0.00 0.12 -0.12 -100.00
r50 0.50 0.42 0.08 19.40
r51 0.67 0.51 0.15 29.74
r52 1.17 1.38 -0.21 -15.45
r53 0.08 0.38 -0.29 -77.97
r54 0.00 15.26 -15.26 -100.00
r55 0.50 0.86 -0.36 -41.73
r56 0.00 0.21 -0.21 -100.00
r57 0.08 0.05 0.03 51.78
r58 0.58 0.24 0.35 147.92
r59 1.00 0.49 0.51 104.18
r60 0.00 1.36 -1.36 -100.00
r61 0.00 0.20 -0.20 -100.00
r62 0.17 0.37 -0.20 -54.92
r63 0.17 0.10 0.07 69.54
r64 1.83 6.76 -4.93 -72.89
r65 0.00 0.03 -0.03 -100.00
r66 1.00 0.48 0.52 106.96
r67 0.00 0.01 -0.01 -100.00
r68 5.58 4.71 0.88 18.63
r69 1.17 0.64 0.53 82.85
r70 0.67 0.54 0.12 22.87
r71 1.33 1.81 -0.47 -26.24
r72 0.33 0.43 -0.09 -21.67
r73 0.00 0.04 -0.04 -100.00
r74 0.00 0.93 -0.93 -100.00
r75 0.00 0.00 0.00 0.00
r76 0.00 1.92 -1.92 -100.00
r77 0.67 0.69 -0.03 -3.91
r78 0.00 0.01 -0.01 -100.00
r79 0.00 0.14 -0.14 -100.00
r80 0.00 0.00 0.00 0.00
r81 0.75 2.24 -1.49 -66.53



218 UML use case of diagnostic application

B.2 UML use case of diagnostic application

Figure B.1: UML use case sub-diagrams that describe the main use cases in more
detail.



Appendix C

Statistics and data for case study 2

C.1 Statistics for OLAP exception identification

Table C.1: Analysis of variance table with response log(profit).
Df Sum Sq Mean Sq F value Pr(>F)

Country 19 69.916 3.680 16.663 < 2.2e-16 ***
Personal Accessories 4 41.775 10.444 47.292 < 2.2e-16 ***
Residuals 76 16.783 0.221

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4699 on 76 degrees of freedom

Multiple R-squared: 0.8694, Adjusted R-squared: 0.8298

F-statistic: 21.99 on 23 and 76 Df, p-value: < 2.2e-16

Table C.2: Analysis of variance table with response log(revenues).
Df Sum Sq Mean Sq F value Pr(>F)

Country 19 30.3627 1.5980 32.704 < 2.2e-16 ***
Personal Accessories 4 3.9947 0.9987 20.438 1.835e-11 ***
Residuals 76 3.7137 0.0489

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2211 on 76 degrees of freedom

Multiple R-squared: 0.9025, Adjusted R-squared: 0.8729

F-statistic: 30.57 on 23 and 76 DF, p-value: < 2.2e-16
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Table C.3: Tests for homogeneity of variances.
Bartlett test
data: log(Revenues) by Personal Accessories by Country
Bartlett’s K-squared = 2.8585, df = 4, p-value = 0.5818
Bartlett test
data: log(Revenues) by Country by Personal Accessories
Bartlett’s K-squared = 28.4864, df = 19, p-value = 0.0745
Fligner-Killeen test
data: log(Revenues) by Personal Accessories by Country
Fligner-Killeen:med chi-squared = 3.2684, df = 4, p-value = 0.514
Fligner-Killeen test
data: log(Revenues) by Country by Personal Accessories
Fligner-Killeen:med chi-squared = 10.3277, df = 19, p-value = 0.9444

C.2 Revenues figures
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Figure C.1: Revenues figures in the cube 2001.Quarters × Country × Personal Ac-
cessories.ProductType
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Figure C.2: Revenues figures in the cube 2001.Q1 × Country × Personal Acces-
sories.ProductType

Figure C.3: Revenues figures in the cube 2001.Q2 × Country × Personal Acces-
sories.ProductType
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Figure C.4: Revenues figures in the cube 2001.Q3 × Country × Personal Acces-
sories.ProductType

Figure C.5: Revenues figures in the cube 2001.Q4 × Country × Personal Acces-
sories.ProductType
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Figure C.6: Profit figures in the year 2000 (with a slice), derived from the example
financial database, organised per Country (L3) and All-Products (P 3). Here the
historical normative model is based on these figures.
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C.3 Aggregated tables for generic explanation

Table C.4: Aggregated table for explanation of ∂y223(c) =“low” in the Product di-
mension, with a slice on Quarter 3 in the context cube Year.Q3 × Amsterdam ×
All-Products, where c′ ∈ c ↓ over the path [233]→ [232]→ [231]→ [230].

actual reference inf(y(c′), y223(c)) rel. inf.

(2001,.,.) 199,690.65 378,324.70 -178,634.05
(Q3,.,All-Products) 67,569.40 60,119.14 -7,450.26 0.04
(Q3,.,Knives) 1,576.25 12,139.72 -10,563.47 0.06
(Q3,.,Knives.Survival Edge) 594.00 9,368.75 -8,774.75 0.05
. . . . . . . . . . . . . . .
(Q3,.,Tents) -24,255.78 -37,310.92 13,055.14 -0.07
(Q3,.,Tents.Star Gazer 3) -5,693.20 -23,481.20 17,788.00 -0.10

Table C.5: Aggregated table for the Product dimension where the actual object is
profit(2001, Spain), the norm object is profit(2000, Spain), and the influence values for
instances within the Product dimension related to the exceptional cell profit223(2001,
Spain, All-Products).

Nr. ProductLine ProductType Product Actual Norm Rel. Inf.
P 2 P 1 P 0 (2001) (2000)

All All All 86,248.94 227,834.59
2 Camp. Equip. All All -28,655.09 11,706,68 0.29

. . . . . . . . . . . . . . . . . . . . .
7 Camp. Equip. Tents All -29,405.88 -15,903.43 0.10

. . . . . . . . . . . . . . . . . . . . .
13 Camp. Equip. Lanterns All 1,319.52 8,208.17 0.05
. . . . . . . . . . . . . . . . . . . . .
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Table C.6: Aggregated table for the Product dimension where the actual object is
profit(2001, Canada), the norm object is profit(2000, Canada), and the influence
values for instances within the Product dimension related to the exceptional cell
profit223(2001, Canada, All-Products).

Nr. ProductLine ProductType Product Actual Norm Rel. Inf.
P 2 P 1 P 0 (2001) (2000)

All All All 141,777.29 266,767.25
1 Camp. Equip. All All -389,955.25 -184,914.96 1.64
2 Camp. Equip. Tents All -450,053.83 -270,470.19 1.44

. . . . . . . . . . . . . . . . . . . . .
7 Camp. Equip. Lanterns All 16,965.00 32,761.10 0.13

. . . . . . . . . . . . . . . . . . . . .

Table C.7: Aggregated table for the Product dimension where the actual object is
profit(2001, Belgium), the norm object is profit(2000, Belgium), and the influence
values for instances within the Product dimension related to the exceptional cell
profit223(2001, Belgium, All-Products).

Nr. ProductLine ProductType Product Actual Norm Rel. Inf.
P 2 P 1 P 0 (2001) (2000)

All All All 88,679.70 176,788.39
1 Camp. Equip. All All -28,655.09 11,706,68 0.45

. . . . . . . . . . . . . . . . . . . . .
4 Camp. Equip. Tents All -47,258.10 -32,126.44 0.17

. . . . . . . . . . . . . . . . . . . . .
12 Camp. Equip. Lanterns All 5,528.30 11,014.41 0.06
. . . . . . . . . . . . . . . . . . . . .
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Table C.8: Aggregated table for the Product dimension where the actual object is
profit(2001, Sweden), the norm object is profit(2000, Sweden), and the influence
values for instances within the Product dimension related to the exceptional cell
profit223(2001, Sweden, All-Products).

Nr. ProductLine ProductType Product Actual Norm Rel. Inf.
P 2 P 1 P 0 (2001) (2000)

All All All 369,004.16 459,965.71
2 Camp. Equip. All All -6,463.02 39,338.77 0.50
3 Camp. Equip. Tents All -119,084.09 -92,667.57 0.29

. . . . . . . . . . . . . . . . . . . . .
11 Camp. Equip. Lanterns All 29,415.65 34,938.77 0.06
. . . . . . . . . . . . . . . . . . . . .
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Matrix representation of OLAP
databases

In this appendix, we present the matrix representation of a system of additive drill-

down equations in an OLAP database and a number of its properties, as an alternative

representation for the notation put forward in Chapter 2. To the best of our knowledge

such a matrix representation of OLAP is not yet presented in the current literature.

However, we do suppose that in technical OLAP implementations, such as MOLAP

(Section 2.1.2), similar matrix representations are used in the software.

D.1 Matrix notation

A system of drill-down equations as formulated in (2.11), can be written as a system

of implicit equations and represented in matrix form as

Az = 0, (D.1)

where A is a m × k binary coefficient matrix of constants, z is a k × 1 vector of

variables, and 0 is a m× 1 vector of zeros. The matrix A in (D.1) can be partitioned

as A = [A1 A2], where A1 is the m× n coefficient submatrix for dependent/non-base

variables and A2 is the m × l coefficient submatrix for independent/base variables.

Moreover, the vector of variables z in (D.1) is partitioned in a n×1 vector of dependent
variables y for which we need solutions, and in a l×1 vector of independent variables

x which are given, and represented as z′ = [y x]. As a result the system of equations

228
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in (D.1) can be written in partitioned form as

A1y + A2x = 0. (D.2)

Typically, the system of equations represented in (D.2) is overdetermined, i.e. there

are more equations than dependent variables, because each measure is typically as-

sociated with multiple dimensions. Therefore, the matrix A1 is non-square (m > n)

and not invertible. We will show that in OLAP systems D.2 is uniquely solvable.

Notice that, only in the case of a measure that is associated with only one dimension

the matrix A1 is square.

In the next paragraphs we discuss relevant matrix theory on the conditions un-

der which equation (D.2) is consistent and solvable. To deal with the problem of

system overspecification, the number of equations in (D.2) is reduced with the fol-

lowing method. For each non-base cube C in L, we write down all the drill-down

equations (Equation 2.12) for its cell measure values in a single, arbitrary, dimension

Dq. Basically, we write down one equation for each dependent variable in the vector

y. In this manner, we derive the reduced form of the submatrix A1, denoted by A∗1.

The submatrix A∗1 is square (n×n), due to each dependent variable being associated

with only a single drill-down equation. The main structure of the submatrix A2 is

not influenced by this procedure, because it represents the coefficients of the base

variables in CB. Only the rows with zero values in A2 are reduced accordingly. Now

the matrix A∗ has the following canonical and hierarchical structure:

A∗ = [A∗1 A2] = (D.3)⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−I1 P1 0 0 0 . . .
0 −I2 P2 0 0 . . .
0 0 −I3 P3 0 . . .
...
0

...
0

...
. . .

. . .

0

. . .

−Im−1
...

Pn−1
0 0 . . . 0 0 −Im

∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
...
0
Pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

level
level
level
...

level
level

q
q − 1
q − 2
...
1
0

(top)

(base).

The submatrices of A∗ correspond to hierarchical levels in L. In particular, each ma-

trix partition in the form of the submatrix [−I P ] on the diagonal of A∗ corresponds

with a specific level (q = i1 + i2 + . . . + in) in L, where I is the identity matrix and

P the binary coefficient matrix on that level. For instance, the submatrix [−Im Pn]
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represents the equations on the base level 0, the submatrix [−Im−1 Pn−1] represents

equations on level 1, and so on. Finally, the submatrix [−I1 P1] represents a single

equation on the top level q of L.

Analogously, the vector of non-base variables y is partitioned as:

y′ = [ylevel q ylevel q−1 ylevel q−2 . . . ylevel 2 ylevel 1],

where each partition corresponds with the variables on a specific level in L. The

variables in each partition are siblings of each other in the lattice.

The reduction method produces for each parent cube C in L a single drill-down

path to CB. The method produces a canonical structure for (D.3) due to the com-

mutativity of drill-down operators (Lemma 2.2.1), which is the same irrespective of

the dimension selected for drill-down. Furthermore, if a different dimension would

have been selected on some aggregation level in L in the reduction method, only the

submatrix P would change to P ′. Coefficients of independent variables associated

with the selected dimension will be labelled with ones and coefficients of independent

variables associated with all the non-selected dimensions will be labelled with zeros

in P ′. Obviously, the submatrix Pn, with all the coefficients of the base variables,

does not change.

The submatrix A∗1 is an upper triangular matrix, and

rank(A∗1) = rank(I1) + rank(I2) + rank(I3) + . . .+ rank(Im−1) + rank(Im) = n.

The determinant of A∗1 is the product of the diagonal entries. From the identity

submatrices on the diagonal of A∗1, we can conclude that det(A∗1) = 0. Hence A∗1 is

invertible and therefore the reduced system

A∗1y + A2x = 0 (D.4)

is uniquely solvable. The solution is given by y = −A∗−11 A2x.

The matrix A∗ has the property that

P1 · P2 · · ·Pn−1 · Pn = 1. (D.5)

This property is the result of the fact that the root variable ymax1 max2...maxn(CT ) is

the sum of all the base variables x00...0 (Theorem 2.3.1). This is illustrated in the
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following way. By design the matrix A∗ represents single drill-down paths from all

non-base cubes (including CT ) to CB. In these paths, Equation 2.12 is applied on

all cells. Therefore, the root variable ymax1 max2...maxn(CT ) is the sum of the non-base

variables on level q − 1, the sum of the non-base variables on level q − 2, the sum of

the non-base variables on level q− 3, and so on. This is shown in the following series

of matrix multiplications of the submatrices P1 · P2 · · ·Pn−1 · Pn:

ymax1 max2...maxn(CT ) = ylevel q(CT ) = P1 · ylevel q−1

= P1 · P2 · ylevel q−2

= P1 · P2 · P3 · ylevel q−3
...
= P1 · P2 · · ·Pn−1 · ylevel 1

= P1 · P2 · · ·Pn−1 · Pn · xlevel 0.

(D.6)

For example, the first row in this series should be interpreted as the matrix rep-

resentation of a drill-down from ymax1 max2...maxn(CT ) to ylevel q−1(R−1q (CT )) and the

last row in this series of matrix operations is equivalent with a series of drill-down

operations from ymax1 max2...maxn(CT ) over some drill-down path to xlevel 0(CB). The

product of all submatrices P1 ·P2 · · ·Pn−1 ·Pn in A∗, has to result in a vector of ones,

denoted by 1, shown by ymax1 max2...maxn(CT ) = P1 ·P2 · · ·Pn−1 ·Pn ·xlevel 0 = 1 ·x00...0,

because of Theorem 2.3.1.

Now suppose that we write down, for one non-base cube C in L, all the drill-down

equations for its cell measure values for a different dimension Dq. The structure of

the reduced matrix A∗ will be the same, because there is still one drill-down equation

for each non-base variable. Coefficients in the submatrix [−I P ] are changed into the

coefficients of the submatrix [−I P ′], corresponding to the new dimension. We derive

a matrix A∗′ with the same structure as (D.4), however with one or multiple changed

submatrices, e.g. [−I1 P ′1], corresponding with a different dimension for drill-down

on the root level q:

A∗′ = [A∗′1 A2] =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−I1 P ′1 0 0 0 . . .
0 −I2 P ′2 0 0 . . .
0 0 −I3 P ′3 0 . . .
...
0

...
0

...
. . .

. . .

0

. . .

−Im−1
...

P ′n−1
0 0 . . . 0 0 −Im

∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
...
0
P ′n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Notice that the product of all submatrices P ′1 · P ′2 · · ·P ′n−1 · P ′n in A∗′ also results in a

vector of ones: P ′1 ·P ′2 · · ·P ′n−1 ·P ′n = 1 (see expression D.5) due to the commutativity

of drill-down operators (Theorem 2.2.1).

Now we show that the matrix [A∗′1 A2] can always be obtained from the matrix

[A∗1 A2] by means of elementary row operations1 (Schott 1997). In other words, the

matrices [A∗′1 A2] and [A∗1 A2] are row-equivalent matrices. We write R(A) for the

matrix obtained by performing row operation R on matrix A. Each row operation R

defines an (invertible) elementary matrix ER = R(In) by performing row operation

R on the identity matrix In. It can easily be shown that ER · A = R(A) (Schott

1997). If [A∗′1 A2] and [A∗1 A2] are row-equivalent matrices, then there is a sequence

of E1, E2, . . . , Ek matrices such that A∗′1 = E1E2 . . . EkA
∗
1, in particular an invertible

transformation matrix E such that EA∗1 = A∗′1 and EA2 = A2. The product of the

sequence of elementary matrices, the elementary transformation matrix E, when we

write down different drill-down equations for all the cell measure values of non-base

cubes C on each level of L, has the form

E = (D.7)⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I1 P1 − P ′1 (P1 − P ′1) · P2 . . . (P1 − P ′1) · P2 · P3 · · ·Pn−1
0 I2 P2 − P ′2 . . . (P2 − P ′2) · P3 · P4 · · ·Pn−1
0 0 I3 . . . (P3 − P ′3) · P4 · P5 · · ·Pn−1
...
0

...
0

...
. . .

. . .

Im−1

...
Pn−1 − P ′n−1

0 0 . . . 0 Im

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The multiplications of submatrices in (D.7) are the result of drill-down operations,

as defined in D.6, from one aggregation level to the next in L, combined with their

property of commutativity (see Theorem 2.2.1) expressed as P1 · P2 · · ·Pn−1 · Pn =

P ′1 · P2 · · ·Pn−1 · Pn.

Theorem D.1.1. Let (y0,x0) be the solution for the reduced system of drill-down

equations A∗1y0 + A2x0 = 0. It is also the solution of the alternative reduced system

A∗′1 y0 + A2x0 = 0, where [A∗1 A2] = [A∗′1 A2] are row-equivalent.

1Elementary row operations are: row switching, row multiplication, and row addition.
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Proof. If the matrix E is the invertible, elementary transformation matrix such that

E · [A∗1 A2] = [A∗′1 A2], then

A∗1y0 + A2x0 =
E(A∗1y0 + A2x0) =
EA∗1y0 + EA2x0 =
A∗′1 y0 + A2x0 = 0.

In summary, we have shown that the reduced system of drill-down equations in

(D.3) has a unique solution and that this solution also holds for all alternative reduced

systems (see Theorem D.1.1) that can be derived from the original system of drill-

down equations in (D.2). The original system of equations is uniquely solvable due to

Theorem 2.3.1. A solution for this overdetermined system can be computed (Caron

and Daniels 2009).

The fact that (D.2) is uniquely solvable implies rank(A1|−A2x) = rank(A1) for all

x, see Theorem 6.1 from Schott (1997). So the columns of A2 are linear combinations

of the columns of A1, soA2 = A1Z where Z is a n×lmatrix of constants. Furthermore,

since the solution for y is unique we have rank(A1) = n because the null space of A1

is N(A1) = {0}. So also Z is unique since A1Z = A1Z
∗ would imply A1(Z−Z∗) = 0

and because N(A1) = {0}, we have Z = Z∗.

It is also easy to show that

Z = A−1 A2, (D.8)

where A−1 is the left generalized inverse of A1. It exists because rank(A1) = n and

A−1 A1 = In, which is based on Theorem 6.6 from Schott (1997). Notice that A1Z = A2

implies:

A1A
−
1 A2 = A1A

−
1 A1A2 = A1Z = A2. (D.9)

So A−1 A2 is a solution of A1Z = A2 and therefore Z = A−1 A2 by uniqueness. Using

Equation (D.9) it can be shown that the complete system of equations, represented

by (D.2), always has a unique solution for a given set of base variables.
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l)EXPLANATION OF EXCEPTIONAL VALUES IN MULTI-DIMENSIONAL
BUSINESS DATABASES

Multi-dimensional or OnLine Analytical Processing (OLAP) databases are a popular
business intelligence (BI)  technique in the field of enterprise information systems for
business analytics and decision support. In this dissertation, OLAP database functionality
is extended to support the business analyst in the exploration of OLAP data. The database
is augmented with novel functionality for the detection of exceptional values, explanation
generation, and sensitivity analysis. We describe how exceptional values at any level in
the data, can be automatically detected by statistical and managerial models. It is also
shown how exceptional values can be explained by underlying causes. This is realized by a
generic model for diagnosis of atypical values. By applying it, a full explanation tree of
causes at successive levels can be generated. If the tree is too large, the analyst can use
appropriate filtering measures to prune the tree to a manageable size. The purpose of the
methods and algorithms presented here, is to provide OLAP databases with more powerful
explanatory analytics and reporting functions. This methodology has a wide range of
applications, such as variance analysis in accounting, competition benchmarking, analysis
of sales and financial data, and the analysis of any other data that possess a multi-
dimensional hierarchical structure. The method is demonstrated in several case studies. For
example, the explanatory analysis of a sales data cube is discussed, and computerized
competition benchmarking with financial data about Dutch retail companies is illustrated.
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